Skip navigation
Please use this identifier to cite or link to this item:

Title: Natural and extended formulations for the Time-Dependent Traveling Salesman Problem
Authors: Godinho, Maria Teresa
Gouveia, Luis
Pesneau, Pierre
Keywords: Time Dependent Traveling Salesman Problem
Extended formulations
Issue Date: 27-Dec-2011
Publisher: Elsevier
Citation: Godinho, M.T., Gouveia, L., Pesneau, P. (2014). Natural and extended formulations for the Time-Dependent Traveling Salesman Problem. Discrete Applied Mathematics, 164 (part 1), 138-153.
Abstract: In this paper, we present a new formulation for the Time-Dependent Traveling Salesman Problem (TDTSP). We start by reviewing well known natural formulations with some emphasis on the formulation by Picard and Queyranne (1978) [22]. The main feature of this formulation is that it uses, as a subproblem, an exact description of the n-circuit problem. Then, we present a new formulation that uses more variables and is based on using, for each node, a stronger subproblem, namely an n-circuit subproblem with the additional constraint that the corresponding node is not repeated in the circuit. Although the new model has more variables and constraints than the original PQ model, the results given from our computational experiments show that the linear programming relaxation of the new model gives, for many of the instances tested, gaps that are close to zero. Thus, the new model is worth investigating for solving TDTSP instances. We have also provided a complete characterization of the feasible set of the corresponding linear programming relaxation in the space of the variables of the PQ model. This characterization permits us to suggest alternative methods of using the proposed formulations.
Peer reviewed: yes
Publisher version:
Appears in Collections:D-MCF - Artigos em revistas com peer review

Files in This Item:
There are no files associated with this item.

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Currículo DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.