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Abstract
Stochastic symmetric matrices with a dominant eigenvalue, 𝛂,can be written
as the sum of λ𝛂𝛂t (where λ is the first eigenvalue), with a symmetric error
matrixE. The information in the stochasticmatrix will be condensed in its struc-
tured vectors, λ𝛂, and the sum of square of residues, V . When the matrices of a
family correspond to the treatments of a base design, we say the family is struc-
tured. The action of the factors, which are considered in the base design, on
the structure vectors of the family matrices will be analyzed. We use ANOVA
(Analysis of Variance) and related techniques, to study the action under lin-
ear combinations of the components of structure vectors of the m matrices of
the model. Orthogonal models with m treatments are associated to orthogonal
partitions. The hypothesis to be tested, on the action of the factors in the base
design,will be associated to the spaces in the orthogonal partitions.Wewill show
how to carry out transversal and longitudinal analysis for families of stochastic
symmetric matrices with dominant eigenvalue associated to orthogonal models.
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1 INTRODUCTION

The use of the pair given by a dominant eigenvalue and the corresponding eigenvector, when they exist, to condense the
information in a symmetric matrix showed to be useful when considering series of studies, see.1-7

These studies arematrix triplets constituted by a datamatrix and twoweightmatrices. The columns of the datamatrix
correspond to variablesmeasured in objects, which are associated to the rows. Thematrix triplets (Xj,Dj, Ḋj), i, j= 1, … , k,
are condensed in the Aj = XjḊjDjXtj,, i, j = 1, … , k, if the studies are on the same objects or Bj = XtjDjXjḊj, i, j = 1, … , k,
of the studies use on the same variables. We next obtain the inner product Aj ∣ Aj′ = tr(Aj,At

j′), i, j = 1, … , k, or Bj ∣ Bj′ =
tr(Bj,Btj′), i, j = 1, … , k, where tr indicates trace. These are the matrices whose information is condensed whenever they
have a leading eigenvalue.

Besides singular sets of studies, we can consider structured families whose series correspond to the treatments of a
base design, see References 8,9.

We now present a general formulation of the condensation of information in a symmetric matrix with a dominant
eigenvalue, both for singular matrices and structured families whose matrices correspond to the treatments of a base
design. This opens a wide range of possible applications.The models will be derived from the spectral analysis of their
mean matrices 𝝁, and are given by
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M = 𝝁 + E =
k∑
j=1

𝜆j𝜶j𝜶
t
j + E, (1)

with (𝜆j,𝜶j) are the pairs (eigenvalues, eigenvectors) of 𝝁 andE is a symmetric stochastic matrix.10,11 To avoid considering
a possible large number of small eigenvalues we assume that 𝜆1 ≥ … ≥ 𝜆k.

With 𝜷 j = 𝜆j𝜶j, j = 1, … , k, the information contained inM can be condensed in a structure vector

𝜷 = [𝜷t1 … 𝜷tk]
t,

and, a sum of square of residues

V = ||M||2 − ||𝜷||2, (2)

where |||| indicates the Euclidean norm both for matrices and vectors.
In the next section we consider these models. Next, in Section 3, we study structured families of symmetric stochastic

matrices. The matrices in these families correspond to the treatments of a base design with fixed effects. We then study
the action of the factors in the base design on the structure vectors of the matrices. When we may assume that the first
eigenvalue of the matrices is dominant, we may lighten our treatment restricting it to the first structured vector of the
matrices.9,12

2 MODELS

ForM a symmetrical n×n stochastic matrix, with mean matrix 𝝁, we assume the model

M = 𝝁 + E, (3)

where E = 1
2
(E + Et) and E is a symmetric error matrix, with vec (E) normal with null mean vector and covariance

matrix 𝜎2In2 . Now, 𝝁will be symmetrical, so, if it has rank k it will have the pairs (𝜆i,𝜶i) of eigenvalues and eigenvectors,
i = 1, … , k.

Let (𝜃i, 𝜸i), i = 1, … , n be the pairs of eigenvalues and eigenvectors of matrixM ordered according to 𝜃1 ≥ … ≥ 𝜃n.
Following Reference 6, we estimate 𝜷 i = 𝜆

1∕2
i 𝜶i by 𝜷 i = 𝜃

1∕2
i 𝜸i, i = 1, … , k. Withm1…mn the column vectors of matrix

M, we have

𝜷 i = M𝜸i = Mt𝜸i =
⎡⎢⎢⎢⎣
mt

1𝜸i

⋮

mt
n𝜸i

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝜸t1m1

⋮

𝜸timn

⎤⎥⎥⎥⎦ (4)

= (In ⊗ 𝜸ti)
⎡⎢⎢⎢⎣
m1

⋮

mn

⎤⎥⎥⎥⎦ ,
= (In ⊗ 𝜸ti) Z, i = 1, … , k, (5)

with⊗, indicating Kronecker matrix product, and Z = vec(M).
Then, with 𝜼 and 𝜷 i the mean vectors of Z and 𝜷 i, i = 1, … , k we have

𝜷 i = (In ⊗ 𝜸ti) 𝜼, i = 1, … , k, (6)

while the covariance matrix of 𝜷 i, i = 1, … , k, will be∑
(𝜷 i) = (In ⊗ 𝜸ti) L(In ⊗ 𝜸i), i = 1, … , k, (7)

with L = 𝚺(Z).
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Following Reference 11. the 𝜷1 … 𝜷k
[
𝜸1 … 𝜸k

]
if they are good estimators (for small k) of the 𝜷1…𝜷k[𝜶1…𝜶k], we

will have

E = M −
k∑
i=1

𝜷 i𝜶
t
i ≈ M −

k∑
i=1

𝜷 i𝜸
t
i = M −

k∑
i=1

(In ⊗ 𝜸ti)Z𝜸
t
i , (8)

as well as

R = vec(E) ≈ Z − vec

( k∑
i=1

(In ⊗ 𝜸ti)Z𝜸
t
i

)
. (9)

Since

vec

( k∑
i=1

(In ⊗ 𝜸ti)Z𝜸
t
i

)
= WZ, (10)

with

W =
k∑
i=1

(𝜸i ⊗ In ⊗ 𝜸ti), (11)

we get

R = (In2 −W)Z, (12)

so

Σ(R) = 𝜎2(In2 −W)L(In2 −Wt), (13)

while R can be considered as a residue vector, and

𝜷 = [𝜷
t
1 … 𝜷

t
k]t, (14)

will be the adjusted global structure vector.13,14
VectorsR and𝜷 play a key role in inference. Since these vectors are not independent,wehave to obtain ahomoscedastic

residue vector AR independent from the vector 𝜷 = BZ, with

B =
⎡⎢⎢⎢⎣
In ⊗ 𝜸ti

⋮

In ⊗ 𝜸tk

⎤⎥⎥⎥⎦ .
Applying the Gram–Schmidt orthogonalization to the column vectors of

Σ(R; 𝜷) = (In2 −W)LBt. (15)

After applying the Gram–Schmidt method to the column vectors of matrix (In2 −W)LBt, which has a characteristic r,
one obtains r orthonormalized vectors z1, … zr. Let 𝜹i, i = 1, … , n2, be the vectors with n2 components of which n2 − 1
are null and the ith component is one. Applying the Gram–Schmidt method to the vectors z1, … , zr, 𝜹1, … , 𝜹n2−a, one
obtains not only z1,… , zr but also the line vectors of matrix A∶ a1, … , an2−r.

Being the covariance matrix of AR given by

Σ(AR) = 𝜎2A(In2 −W)L(In2 −Wt)At,
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if Σ(AR) has rank g, it will have positive eigenvalues 𝜈1, … , 𝜈g, (since covariance matrices do not have negative
eigenvalues), associated to eigenvectors 𝝃1, … , 𝝃g. Thus, with

G = D
(
𝜈
−1∕2
1 , … , 𝜈

−1∕2
g

)
[𝝃1, … , 𝝃g]t,

where

D
(
𝜈
−1∕2
1 , … , 𝜈

−1∕2
g

)
,

is the diagonal matrix with principal elements 𝜈−
1∕2

1 , … , 𝜈
−1∕2
g , we have Σ(GAR)= 𝜎2Ig. So,

Ṙ = GAR = (Ṙ1, … , Ṙg), (16)

is an homoscedastic residues vector. So, when normality is assumed, Ṙ and 𝜷 will be independent and normal. We are led
to test the hypothesis, see Reference 14

Hok ∶ Ṙ1, … , Ṙg i.i.d. ∼ N(0, 𝜎2).

Now, when Ho holds, the statistic,

̃ =
gṘ2

0∑g
j=1 Ṙ

2
j − gṘ2

0
, (17)

where Ṙ0 = 1
g

∑g
j=1 Ṙj, will be the quotient of two independent central chi-squares with, 1 and g− 1 degrees of freedom,

and we will use this statistic to testHo. If f q∕2 and f 1−q∕2 are quantiles for probabilities
q∕2 and 1 − q∕2, for that quotient, we

may use
[
f q∕2; f 1−q∕2

]
as the q level acceptance region for themodel. The correspondent rejection regionwill be

[
0; f q∕2

]
∪

[f 1−q∕2; +∞[. When Ho does not hold, the numerator and denominator of  have non-centrality parameters 𝛿1 and 𝛿2
There will be alternatives in which 𝛿1 predominates over 𝛿2 (𝛿2 predominates over 𝛿1) and in which  tends to take larger
(smaller) values than when Ho holds. When the hypothesis is not rejected, we may estimate 𝜎2 by 𝜎2 = ||Ṙ||2

g
.

In practice we can adjust the model for increasing values of k till it is not rejected. We point out that, f p = f1, g−1, p
with f 1, g− 1, p is the pth quantile for the central  distribution with 1 and g− 1 degrees of freedom.

3 STRUCTURED FAMILIES

In this work after considering isolate models we study structured families. A first example of such families is that of
multiregression designs, see References 15,16. So, for each treatment of a base design we have a linear regression on the
same variables.

Thematrices of values of controlled variables and the variance of the error, are assumed to be the same for the different
regressions, see Reference 15. The inference for this family of regressions is centered on the vectors of coefficients or, more
generally, on estimable vectors, leading to interesting results, see.15-21These models, in a structured family, correspond to
the treatments of a base designwith fixed effects. Themost interesting case is when the absence of effects and interactions
for the factors in the base design are associated to the spaces of an orthogonal partition

Rd = ⊞m
j=1𝜛j.

Let the gj row vectors of matrices Aj constitute an orthonormal basis for 𝜛 j, j = 1, … , m, then, we have the sum of
squares

Sj = ||AjY||2, j = 1, … ,m, (18)



DIAS et al. 5 of 8

where Y is a vector whose components correspond to the treatments of the base design. For instance, if the
models in structured family are for symmetrical stochastic matrices with dominant first eigenvalues, we may be
interested in the action of the factors on the base design, of their first structure vectors for which we have the
estimators

𝜷1(h) = (𝜷1,1(h) … 𝜷1,n(h)), h = 1, … , d. (19)

Then we carry out Anova-like analysis for the

Z(l) = (𝜷1,l(1) … 𝜷1,l(d)), l = 1, … ,n, (20)

this is for the vectors of homologue components of the estimated first structure vectors.22,23 Then, we have a transversal
analysis. Another possibility is to carry out a longitudinal analysis on the vectors of linear combinations

Z(c) = (ct𝜷1(1), … , ct𝜷1(d)), (21)

thus, the components of Z(c) will be contrast on the components of the 𝜷1(1), … , ct𝜷1(d).
To avoid repetitions, we represent by ż the vector which we carry the analysis. We then have the sums of squares

Sj = ||Ajż||2, j = 1, … ,m, (22)

we now point out that, see Reference 11, the hypothesis H0, j associated to𝜛 j, j = 1, … ,mmay be written as

H0,j ∶ Aj𝜼 = 0gj , j = 1, … ,m, (23)

with 𝜼 the mean vector of Z. This hypothesis holds if and only if 𝜼∈𝜔j, j = 1, … ,m with 𝝎j the orthogonal complement
of𝜛 j j = 1, … ,m.

In general, we use the sum of the sum of squares of higher-order interactions to estimate the error. Let be the set of
indexes of these interactions then with

⎧⎪⎨⎪⎩
S =

∑
j∈

Sj

g =
∑
j∈

gj
(24)

we have the test statistics

j =
g
gj

Sj
S
, j ∉  (25)

with gj and g degrees of freedom see References 13,14.
When there are u factors, with J1… Ju levels in the base design, there are 2u ⊂ ū = {1, … ,u} of sets of factor indexes

in a fixed effects model corresponds to the general mean value, and if #(𝜑) = 1 [>1], 𝜑 will correspond to the effects of
levels, (interactions between levels) for the factor (factors), with index (indexes) in 𝜑.

Then, to obtain the sum of squares for the effects and interactions we have, see Reference 11, the matrices

A(𝜑) = ⊗u
l=1Al(𝜑);𝜑 ⊆ ū, (26)

where⊗ indicates the Kronecker matrix product and

Al(𝜑) =
⎧⎪⎨⎪⎩

1√
Jl
1tJl , l ∉ 𝜑

TJl , l ∈ 𝜑
, l = 1, … ,u;𝜑 ⊆ ū, (27)
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withTJl obtained deleting the first row equal to 1√
Jl
1tJl from a orthogonalmatrix when l∈𝜑. ThenA(𝜑) has rank Jl × Jl,

with

g(𝜑) =
∏
l∈𝜑

(Jl − 1);𝜑 ⊆ ū, (28)

the degrees of freedom for the hypothesis associated to 𝜑.
The order of a factor interaction is the number of factors taken in it minus one, so now we may take

Dh = {𝜑, #(𝜑) ≥ h}, (29)

to obtain ⎧⎪⎨⎪⎩
S =

∑
#(𝜑)≥h

S(𝜑)

g =
∑

#(𝜑)≥h
g(h)

(30)

with

S(𝜑) = ||A(𝜑)Z||2;𝜑 ≤ ū, (31)

we then have the statistics

 =
g

g(𝜑)
S(𝜑)
S

, #(𝜑) < h, . (32)

with g(𝜑) and g degrees of freedom.
As an alternative we may consider the case in which we have estimators 𝜎2h for h = 1, … , d. This is, we did not reject

the homoscedasticity of vector Rh, h = 1, … , d for any matrix in the family. Then, we can carry the Bartlett Chi-square
test for

H0,j ∶ 𝜎21 = … = 𝜎2d = 𝜎2, j = 1, … ,m. (33)

If this hypothesis is not rejected, we can use the estimator

𝜎2 = 1
d

d∑
h=1

𝜎2h, (34)

with gh the number of components of Ṙh, h = 1, … , d and

g =
d∑
h=1

gh. (35)

We use the statistic.

j =
1
gj
Sj
𝜎2

, j = 1, … ,m, . (36)

for testing all the H0, j, j = 1, … ,m. We now have gj, j = 1, … ,m and g degrees of freedom for j, j = 1, … ,m.

4 CONCLUSIONS

In this paperwe presentmodels for symmetric stochasticmatrices, showing how to adjust and validate them in the general
case, using the estimator

𝜷 i = 𝜃
1∕2
i 𝜸i, i = 1, … , k.
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These models provided the basis for making inference for isolated matrices and structured families of matri-
ces. We study the action of the factors in the base design on the structured vectors of the matrices, and
we show that when the first eigenvalue of the matrices is dominant, we may lighten our treatment restrict-
ing it to the first structured vector of the matrices. Finally, we show how to carry out transversal and longi-
tudinal analysis for families of stochastic symmetric matrices with dominant eigenvalue associated to orthogonal
models.

The information condensation based on the pair of a dominant eigenvalue and the corresponding eigenvector, is now
given without restricting it to series of studies.
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