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Abstract 
A model has orthogonal block structure if it has variance-
covariance matrix that is a linear combination of known 
pairwise orthogonal orthogonal projection matrices that add to 
the identity matrix. When the orthogonal projection matrix on 
the space spanned by the mean vector commutes with the 
orthogonal projection matrices, in the expression of the 
variance-covariance matrix, the model has commutative 
orthogonal block structure. Resorting to B-matrices we present a 
general condition for this commutativity. 
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ON A SUFFICIENT CONDITION FOR COMMUTATIVE ORTHOGONAL BLOCK 
STRUCTURE 

 
1. Introduction 
Linear mixed models are a powerful tool for analysing experimental data from 
several areas, such as agriculture, biology, medicine or industry. In the framework 
of the design of experiments in agricultural trials, in 1965, a special class of linear 
mixed models as emerged, called models with orthogonal block structure, OBS, 
based on the structure of the variance-covariance matrix [6,7].  Later on, in order 
to obtain optimal estimation for variance components of blocks and contrasts of 
treatments, using the algebraic structure of OBS, arose a particular case of these 
models, those of models with commutative orthogonal block structure, COBS [4].   

2.   Models with commutative orthogonal block structure 

Let us consider a mixed model 

𝒀 =∑𝑿𝑖𝜷𝑖

𝑤

𝑖=0

 

where 𝜷0 is fixed and 𝜷1 ,  …  ,  𝜷𝑤  are independent random vectors with null 
mean vectors, variance-covariance matrices 𝜎12𝑰𝑐1 …  𝜎𝑤

2𝑰𝑐𝑤   , where 𝑐𝑖 =
𝑟𝑎𝑛𝑘(𝑿𝒊), 𝑖 = 1,… ,𝑤 and null cross-covariance matrices. 

 𝒀 has mean vector   

𝝁 = 𝑿0𝜷0 
and variance-covariance matrix  

𝑽(𝜽) =∑𝜎𝑖
2𝑴𝑖

𝑤

𝑖=1

 

where 𝑴𝑖 = 𝑿𝑖𝑿𝑖
𝑇, 𝑖 = 1, … ,𝑤. 

Since the space spanned by the mean vector is 𝛺 = 𝑅(𝑿0), the orthogonal 
projection matrix, OPM, on 𝛺,  is 𝑻 = 𝑿0(𝑿0𝑇𝑿0)+𝑿0𝑇 = 𝑿0𝑿0

+ , where + 
indicates Moore–Penrose inverse. 

When the matrices 𝑴1, … ,𝑴𝑤  commute, they generate a commutative Jordan 
algebra of symmetric matrices, CJAS,A. This is a linear space constituted by 
symmetric matrices that commute and containing the squares of their matrices [5]. 
The CJAS, A, as one unique basis, called the principal basis,𝑄, that is constituted 
by known pairwise orthogonal orthogonal projection matrices, POOPM, [8] thus 
the matrices 𝑴𝑖, 𝑖 = 1,… ,𝑤 are linear combinations  of the matrices of the CJAS 
principal basis 
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𝑴𝑖 =∑𝑏𝑖,𝑗𝑸𝑗

𝑚

𝑗=1

 

With 𝛾𝑗 = ∑ 𝑏𝑖,𝑗  𝜎𝑖
2𝑤

𝑖=1 ,  𝑗 = 1, … ,𝑚, the canonical variance components, the 
variance-covariance matrix of 𝒀 will take the form   

𝑽 =∑𝛾𝑗 𝑸𝑗

𝑚

𝑗=1

 

Since ∑ 𝑴𝑗
𝑤
𝑖=1 ∈ A is invertible, A is a complete CJAS and  ∑ 𝑸𝑗

𝑚
𝑗=1 = 𝑰𝑛. 

 So 

𝒀 =∑𝑿𝑖𝜷𝑖

𝑤

𝑖=0

 

is a model with orthogonal block structure, OBS. These models, introduced in 
[6,7], have been intensively studied and play a central part in the theory of 
randomized block designs, see, e.g., [1,2]. 

An important class of OBS, models with commutative orthogonal block structure, 
COBS, arises when 𝑇, the OPM on the space spanned by the mean vector, 
commutes with the POOPM 𝑸𝑗, 𝑗 = 1,… ,𝑚. [4].  So 𝑻 and 𝑽 commute and the 
least square estimators, LSE, for estimable vectors, will give BLUE (best linear 
unbiased estimators) whatever the variance components [10]. 

Assuming the rows of 𝑿0 to correspond to the sets of levels of the fixed effects 
factors, the mean values of the observations will be determined by those sets.  

Let us consider that there will be �̇� sets of the levels associated to 𝑟1,  … ,  𝑟�̇�, 
contiguous rows of 𝑿0. If the components of 𝜷0 , 𝛽0,1,  … , 𝛽0,�̇� , are the 
corresponding mean values, we can reorder the observations to have the block 
diagonal matrix 

𝑿0 = 𝐷(10,1, … , 10,�̇�)  

So the orthogonal projection matrix on  , the space spanned by the mean vector, is 
given by 

𝑻 = 𝐷 (
1

𝑟1
𝐽𝑟1 , … ,

1

𝑟�̇�
𝐽𝑟�̇�)  
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where 𝐽𝑟 = 1𝑟 1𝑟
𝑇
 

The fundamental partition of 𝒀 will be constituted by the sub-vectors 𝒀1,  … ,  𝒀�̇�, 
corresponding to the �̇� sets of the levels of the fixed effects factors [3]. Then the 
variance covariance matrix can be defined by 

𝑽 = [

𝑽1,1 … 𝑽1,�̇�
⋮ ⋮

𝑽�̇�,1 … 𝑽�̇�,�̇�

] 

with 𝑽𝑙,𝑙  the variance-covariance matrix of 𝒀𝑙, 𝑙 = 1,… , �̇� , and 𝑽𝑙,ℎ  the cross-
covariance matrix of 𝒀𝑙   and 𝒀ℎ, 𝑙 ≠ ℎ. 
 
Since 

𝑇𝑉 =

[
 
 
 
1

𝑟1
𝐽𝑟1𝑽1,1 …

1

𝑟1
𝐽𝑟1𝑽1,�̇�

⋮ ⋮
1

𝑟�̇�
𝐽𝑟�̇�𝑽�̇�,1 …

1

𝑟�̇�
𝐽𝑟�̇�𝑽�̇�,�̇�]

 
 
 

  and  𝑉𝑇 =

[
 
 
 𝑽1,1 

1

𝑟1
𝐽𝑟1 … 𝑽1,�̇� 

1

𝑟1
𝐽𝑟1

⋮ ⋮

𝑽�̇�,1
1

𝑟�̇�
𝐽𝑟�̇� … 𝑽�̇�,�̇� 

1

𝑟�̇�
𝐽𝑟�̇�]
 
 
 

  

the matrices 𝑇 and 𝑉 commute if and only if 

{
 
 

 
 
1

𝑟1
𝐽𝑟1𝑽1,1 = 𝑽1,1 

1

𝑟1
𝐽𝑟1 …

1

𝑟1
𝐽𝑟1𝑽1,�̇� = 𝑽1,�̇� 

1

𝑟1
𝐽𝑟1

⋮ ⋮
1

𝑟�̇�
𝐽𝑟�̇�𝑽�̇�,1 = 𝑽�̇�,1

1

𝑟�̇�
𝐽𝑟�̇� …

1

𝑟�̇�
𝐽𝑟�̇�𝑽�̇�,�̇� = 𝑽�̇�,�̇� 

1

𝑟�̇�
𝐽𝑟�̇�

 

 

Which occurs when the matrices 𝑽𝑙,ℎ , 𝑙 = 1,… , �̇�, h= 1,… , �̇� are B-matrices, see, 
e.g. [9], this is, when 

1

�̇�
∑𝑽𝑙,ℎ 

�̇�

𝑙=1

=
1

�̇�
∑𝑽𝑙,ℎ 

�̇�

ℎ=1

=
1

�̇��̇�
 ∑∑𝑽𝑙,ℎ 

�̇�

ℎ=1

�̇�

𝑙=1

 

 
With  

𝑉 = 𝐷(𝜎1
2 𝐼𝑟1 , … , 𝜎�̇�

2 𝐼𝑟�̇�) 

matrices 𝑇 and 𝑉 commute. 
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With this commutativity condition 𝒀 will be a model with commutative 
orthogonal block structure (COBS) and, according to the version of the Gauss-
Markov theorem in [10], the LSE for estimable vectors will be BLUE. 
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