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Abstract: The production of olive oil in Portugal and other countries of the Mediterranean region has
greatly increased in recent years. Intensification efforts have focused on the growth of the planted
area, but also on the increase of the orchards density and the implementation of irrigation systems.
Concerns about possible negative impacts of modern olive orchard production have arisen in the
last years, questioning the trade-offs between the production benefits and the environmental costs.
Therefore, it is of great importance to review the research progress made regarding agronomic options
that preserve ecosystem services in high-density irrigated olive orchards. In this literature review, a
keywords-based search of academic databases was performed using, as primary keywords, irrigated
olive orchards, high density/intensive/hedgerow olive orchards/groves, irrigation strategies, and
soil management. Aside from 42 general databases, disseminated research, and concept-framing
publications, 112 specific studies were retrieved. The olive orchards were classified as either tra-
ditional (TD) (50–200 trees ha−1), medium-density (MD) (201–400 trees ha−1), high-density (HD)
(401–1500 trees ha−1), or super-high-density (SHD) orchards (1501–2500 trees ha−1). For olive crops,
the crop coefficient (Kc) ranges ranges from 0.65 to 0.70, and can fall as low as 0.45 in the summer
without a significant decrease in oil productivity. Several studies have reported that intermedi-
ate irrigation levels linked with the adoption of deficit irrigation strategies, like regulated deficit
irrigation (RDI) or partial rootzone drying (PRD), can be effective options. With irrigation, it is possi-
ble to implement agroecosystems with cover crops, non-tillage, and recycling of pruning residues.
These practices reduce the soil erosion and nutrient leaching and improve the soil organic carbon by
2 to 3 t C ha−1 year−1. In this situation, in general, the biodiversity of plants and animals also increases.
We expect that this work will provide a reference for research works and resource planning focused
on the improvement of the productive and environmental performance of dense irrigated olive
orchards, thereby contributing to the overall enhancement of the sustainability of these expanding
agroecosystems.

Keywords: irrigated olive orchards; high density; hedgerow; irrigation strategies; soil management

1. Introduction

The world’s olive cultivation area was about 10.3 Mha in 2021, yielding 23 million
tons of olive fruits. From 2015 to 2021, the top European olive producers were Spain (32%),
Greece (13%), Italy (10%), and Portugal (4%) [1]. Portugal is the fourth olive producer
in Europe and the eighth in the world. Despite only representing 4% of the total olive
cultivation area and 4% of the total production worldwide, the Portuguese olive sector is
an important source of income for the country.

In Portugal, the Southern region of Alentejo is the main production province, com-
prising 52.4% of the total Portuguese area (377,234 ha), with a large part occupied by
dense irrigated plantations (Figure 1). Irrigated orchards cover 31.7% of the total Por-
tuguese olive tree area, 13.8% corresponding to super-high-density orchards, with over
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1500 trees ha−1 [2] (Figure 1). The olive harvest occurs every year from early October to
January. The oil content of Portuguese olives varies from 14% to 20% of the fruit fresh
weight, depending on the cultivar and harvest date. Normally, early harvesting leads to
lower oil content of the fruits [3–10].
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Figure 1. Comparison between olive orchard area (ha) in Portugal and the Portuguese Alentejo
region by tree density classes [2].

Traditionally, olive trees have been grown in the region surrounding the Mediter-
ranean, mainly as a rainfed crop with low productivity given the typical dry environment
of this region. In recent years, the expansion of olive oil and table olive production has
been achieved through both an increase in the planted area and through intensification
within and beyond the Mediterranean countries by increasing the orchards’ density and
via the introduction of irrigation [11–13]. In fact, in the last two decades, high-density (HD;
401 to 1500 trees ha−1) and super-high-density (SHD; 1501 to 2500 trees ha−1) orchards,
known as hedgerow olive orchards, have been developed to further reduce harvesting
costs using over-the-row harvesting machines [14–16]. Because of the higher water de-
mand of the dense canopies and the low soil volume available for each tree, irrigation is
usually needed [12,17,18]. The current water scarcity in traditional olive-growing regions,
like Alentejo, along with the expected increase in heat waves and droughts caused by
climate change [16,19,20], imply an urgent need to reduce the use of water for irrigation of
crops in these regions and to adopt measures to avoid the degradation of soil resources
and biodiversity.

The adoption of management practices that maintain ecosystem services (SE), like soil
and water conservation practices for the regulation of SE, or biodiversity preservation [15]
for the support of SE, is a key aspect of modern agriculture [21,22]. The olive-growing
sector is no exception to this premise. In fact, the increase in irrigated dense plantations of
olives has led to relevant changes in the landscapes of some regions, and the risk of negative
impacts of this agricultural intensification on the environment must be avoided [14,23,24].

The target of this review is to focus on the sustainability of high- and super-high-
density olive orchards.

We aim to contribute towards an optimized system in terms of water management,
with a focus on irrigation strategies and agroecological practices to enhance the health of
these agroecosystems. It is our objective to provide: (i) a systematization of the type of
olive orchards that can be found regarding their tree density; and (ii) an overall research
output regarding water-saving irrigation strategies and agroecological options in irrigated
dense olive orchards.
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For this purpose, we applied a keywords-based search of academic databases. The pri-
mary keywords used were irrigated olive orchards, high density/intensive/hedgerow olive
orchards/groves, irrigation management, and soil management. Within these, the secondary
keywords used were water requirements, deficit irrigation strategies, erosion, infiltration rate,
surface temperature, pesticides, herbicides, diseases, cover crops, pruning residues, organic
matter, organic carbon accumulation, nitrogen accumulation, and biodiversity.

2. The Olive Orchard Mosaic
2.1. The Traditional Olive Orchards

When traveling in the Mediterranean area, one can often find olive orchards planted
in the XIXth century or up to the mid-XXth century, with fewer than 50 trees ha−1 to a
maximum of 200 trees ha−1, that are still productive today. These were sometimes planted
on sharp slopes or small and narrow terraces made with stone walls, as can mainly be
observed in the north of Portugal, providing landscapes of great beauty.

In traditional olive orchards (TD), the management of cover crops is conducted by
tillage or total herbicide coverage. Grain crops were traditionally grown within olives
as primary sources of farmers’ income. In these situations, the soil erosion can be quite
dramatic [25–27], and at the same time, the temperature of the soil’s top layer is quite high
in the summer (over 40 ◦C). Although olive is a well-adapted species to drought conditions,
the soil’s exposure to direct sun and the lack of canopy shade over the tree root zone leads
to water and heat stress, and can induce summer dormancy in the trees [28–30].

The farmers use few fertilizers and apply a reduced number of chemical pest and
disease treatments in the olive groves. They are pruned every four years by chain saw, and
the pruning residue is generally burned. The alternate bearing is very strong, with a sparse
yield in the year following pruning [14]. Since these orchards are rainfed, the biodiversity
of species is sometimes low due to the lack of water and cover crops [31–33].

Traditionally, the harvest is performed by hand with wood sticks, although nowadays,
some growers use portable backpack shakers with or without nets covering the floor. The
net production of these olive ecosystems is less than 3 t ha−1 of fruits. The quality of the
oil produced is often affected by diseases like anthracnose (Colletotrichum sp.) [34] or by
contamination of the fruit through direct contact with the orchard floor [35]. The overall
sustainability of this traditional olive system is currently compromised due to the lack of
workers and the labor price [36] (Table 1).

2.2. The Medium-Density Olive Orchards

The most common olive orchards in the Mediterranean area are those with medium
density (MD; 200–400 trees ha−1), which are very likely to be observed in lime soils of the
southern parts of Portugal or Spain. They are rainfed or little irrigated, and the soil is kept
weed-free by tillage or by partial (in the rows) or total herbicide application. Many have
spontaneous cover plants, mainly in the interrows, which are used to some extent as grazing
lands. In this case, animal manure provides some nutrient recycling for the ecosystem and
complements the annual fertilization. The pruning is carried out in alternate years and is
less intense than in the traditional orchards. The pruning residue is often burned.

The sun exposure of the soil is lower due to the improved tree shade, resulting in
better development of resident herbaceous vegetation that increases insect populations,
improving biodiversity, and provides more protection against soil erosion than in the
TD systems.

The harvest is carried out by tree shaking using floor nets or wraps around the trees
as collecting systems. These orchards have been upgraded over time by increasing plant
density and providing better irrigation. This agricultural system is undergoing a fast
transition to a higher-density system [37–39].
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Table 1. Systematization of the most common olive orchards’ agricultural systems in the Mediterranean climate and their features. Traditional (TD), medium-density
(MD), high-density (HD), and super-high-density (SHD).

Orchard Type Spacing Inter-row
× Row (m)

Tree Density
(trees ha−1)

Productivity
(t ha−1)

Soil
Conservation Tree Architecture Pruning Irrigation and Soil

Management Harvest Common Cultivars

Traditional (TD) 8–15 × 6–15 50–200 0.5–3 Slopes: 0 to 30%.
Strong erosion.

Trichotomic vase
canopy.

Strong alternate
bearing.

Every 4 years.
Chain saw.

Pruning residue is burned.

Non-irrigated.
Soil tillage, inter-row grain

crops. Herbicides.

Hand branch
shakers, with or

without floor nets.

Galega, Verdeal,
Cordovil.

Medium-density
(MD) 7–8 × 3.5–6 201–400 3–6 Slopes: 0 to 15%.

Some erosion.

Trichotomic vase
canopy.

Alternate bearing.

Every 2 years.
Chain saw.

Pruning residue is burned.

Non-irrigated or low-irrigated.
Soil tillage, herbicides, or

spontaneous weed cover, some
used for animal pasture.

Trunk shaker, floor
nets. Wrap around
the tree collector.

Galega, Verdeal,
Cordovil,

Cobrançosa, Picual,
Frantoio

High-density (HD) 4–7 × 1.7–3.5 401–1500 6–12

Slopes: 0 to 10%.
Low erosion.

Dichotomic vase or
hedge row.

Some alternate
bearing in orchards
over 20 years old.

Every 1–2 years.
Manual shears, electric or air

compressed.
Tractor disc trimmers. Pruning

residue is shredded on site.

Drip irrigation—
250–500mm year−1.

Spontaneous or sowed
cover crops.

Herbicide in the tree rows or
no herbicide.

Trunk shaker and
wrap around the
tree collector, or

over-the-row.

Cobrançosa, Picual,
Arbequina, Frantoio.

Super-high-density
(SHD) 3.5–4 × 1–1.7 1501–2500 12–22

Arbequina,
Arbosana,
Koroneiki.



Water 2023, 15, 2486 5 of 20

2.3. The High- (HD) and Super-High-Density (SHD) Olive Orchards

The success of the higher-density olive agricultural systems is based on water availabil-
ity [12,40]. The olive tree is an evergreen species with a remarkable water control process
that manages water losses, requiring less water in the summer than in the remaining period
of the year [41–43]. Nevertheless, in a region with 562 mm year−1 of average rainfall [44],
250 mm to 500 mm year−1 of supplemental irrigation water are the necessary values for the
trees to achieve their maximum productivity. This demand is lower when compared to the
500–800 mm year−1 required by other perennial species (Figure 2). Under these conditions,
higher densities lead to increased productivity. The HD and SHD olive orchards are planted
with 401–2500 trees ha−1. Plantation is sometimes conducted in ridges of 1.0 m × 0.5 m
(width × height) that are meant to prevent waterlogging and improve soil temperature in
the early spring. These ridges must be made with special care; otherwise, they can prevent
the natural rainfall flow and worsen the waterlogging [45].
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Considering soil management, the soil is normally covered with spontaneous or sowed
herbaceous vegetation to minimize soil erosion. The sowed cover species could be Fabaceae
sp., like Medicago sativa, Vicia sp. or Trifolium spp., which are quite important nitrogen
recyclers (Table 2). Every 2–8 t ha−1 of olive fruits extract 7–28 kg ha−1 of N, 2–8 kg ha−1

of P2O5, and 12–48 kg ha−1 of K2O [47]. The cover species can provide an important
contribution in the form of nitrogen balance in the cases of HD and SHD olive orchards.
The spontaneous or sowed cover crops are also important refuges for beneficial insects
or pollinators, which improve the general biodiversity of HD and SHD orchards [48–54].
Inter-row weed management is usually carried out by shredding 3 to 5 times a year to keep
the weeds below 0.5 m in height. The shredding also recycles the pruning residues left in
the topsoil of these orchards. The recycling of pruning residues is a good practice which
allows the reposition of 2.9 kg t−1 N, 1,1 kg t−1 P2O5, and 2.9 kg t−1 K2O [47], apparently
without side effects related to the improvement of orchard diseases [55]. Nevertheless, soil
diseases caused by Verticilium dahliae may occur [56].
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Table 2. Seed quantity necessary to establish the cover crop and nitrogen fixed by hectare with
Fabaceae species (Adapted from [47]).

Species Sow Seed Quantity
(kg ha−1)

Nitrogen Fixed
(kg ha−1 yr−1)

Alfalfa (Medicago sativa) 10–25 114–223
Broad bean (Vicia faba) 150–200 160–216

Common vetch (Vicia sp.) 40–60 90–155
Crimson clover (Trifolium incarnatum) 10–20 20–64
Eggs and Bacon (Lotus corniculatus) 4–6 49–112

Lentil (Lens culinaris) 60–80 15–85
Pea (Pisum sativum) 70–140 37–185

Red clover (Trifolium pratense) 4–10 68–113
Sub clover (Trifolium subterraneum) 10–20 48–183

White clover (Trifolium repens) 8–12 165–188

If irrigation lines are directly on the soil surface, they do not allow for weed mowing
in the tree lines. Therefore, weed control in the tree row normally requires herbicide
application. This issue should be addressed in the near future, as the herbicide glyphosate
could be banned, and other chemical solutions are currently less economical [57,58].

One advantage of HD and SHD olive orchards is the soil temperature. In the same
location, the temperature of the topsoil in the summer, measured with a FLIR (Forward
Looking InfraRed) device, was about 20 ◦C lower at the top of the cover grass when
compared to bare topsoil [59,60].

Finally, HD and SHD olive orchards are more regular in yield, but do not show
evidence for strong alternate crop behavior when compared with the other systems [12,14].
The cultivars in use have less vigor and, therefore, provide more regular production, at
least during the first 20 years of the orchard’s life [14,16,61–63].

Harvests in HD and SHD olive orchards require tractor trunk shakers with wraps
around the tree collectors or over-the-row self-propelled machines. The latter can harvest
up to one hectare per 1 h (12–22 t of fruits). As the fruits are never in contact with the
ground, they are quite suitable for virgin or extra-virgin oil production [39]. In Portugal,
the harvest is restricted to the period from sunrise to sunset in order to prevent involuntary
bird losses, since these animals often use olive trees as refuges overnight [64].

3. Water Management
3.1. Water Use and Irrigation Requirements

Crop water requirements (CWR) are defined as the amounts of water needed to
replace the water lost through evapotranspiration by a disease-free crop growing in large
fields under no limitations regarding soil conditions, including soil water and fertility, and
achieving full production potential in the given growing environment [65]. This water
loss is defined as the crop evapotranspiration (ETc) under standard conditions, given by
Equation (1):

ETc = ET0 ×Kc (1)

where ET0 is the reference evapotranspiration of a grass-like reference crop, and Kc is
the crop coefficient [66,67]. In fact, ET0 represents an index of climatic demand, and Kc
represents the influence of the specific crop characteristics [68]. The Kc in olive orchards
is affected by several factors, including the canopy architecture, the fraction of ground
covered by the vegetation, crop management practices, and rainfall variability [42]. In the
case of olive growing under standard climatic and agronomic conditions, the Kc values
recommended by FAO vary between 0.65 in the initial phase and 0.70 in the intermediate
and final phases of the development cycle [67]. The monthly Kc values proposed by Pastor
and Orgaz (1994) [69] vary between 0.45 in July and August and 0.65 in March and May.
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To meet the reduction in the fraction of soil covered by vegetation, or the fraction of
shaded area (C, in %) in an olive grove, Fereres and Castel (1981) [70] proposed that ETc be
estimated by Equation (2):

ETc = ET0 ×Kc ×Kr (2)

where Kr should be used when the coverage fraction is less than 50% and corresponds to a
reduction coefficient, obtained by Equation (3):

Kr =
2 C
100

(3)

In the case of irrigated crops, the concept of irrigation water requirement (IWR) must
be considered. The IWR is the amount of water that is required to be applied to a crop to
fully satisfy its specific crop water requirement whenever rainfall, soil water storage, and
groundwater contributions are insufficient [68].

Olive’s water requirements are a function of cultivar characteristics, management,
and environmental demands. Olive trees withstand long periods of drought and can
survive in very sparse plantings, even in climates with very low annual rainfall: values of
150–200 mm year−1 are indicated in Steduto et al. (2012) [17] and Carr (2013) [11] refers to
200–250 mm year−1. However, as referenced in Section 2.3, for economic production, much
higher precipitation or irrigation are required: Carr (2013) [11] states that an average annual
precipitation or irrigation above 600 mm year−1, in soils with good water-holding capacity,
is needed for successful cultivation; Beede and Goldhamer (2005) [71] found values of
around 950 mm year−1 for mature olive trees in clean cultivated orchards with 60% or
higher shaded areas.

Olives are perennial trees that retain their canopies and use water during the entire
year, but, regardless of the growing conditions affecting seasonal water use, they have
different sensitivities to water deficits depending on their development stage. While water
stress during the period of flower bud formation can lead to a reduced number of flowers,
thereby affecting the year’s yield, when it occurs during periods of shoot growth, it can
affect the next year’s yield, which is formed on 1-year-old shoots [45,71,72].

For olive oil production, fruit sets should be managed to maximize oil extractability
and quality. Several studies have reported that intermediate irrigation levels linked with
the adoption of deficit irrigation during certain stages of fruit development can increase the
fruit and oil quality [13,73–76]. Additionally, the slowing of fruit development—known as
the pit hardening phase—is considered as the less sensitive period of olive trees to water
deficit, when it is possible to reduce or interrupt irrigation without a significant reduction
in yield or in oil quality [77–80].

3.2. Irrigation Strategies

The management of irrigation in olive trees following schedules to optimize water
productivity can be an effective option to balance vegetative development, yield, and
fruit quality while ensuring water conservation [81–83]. These irrigation regimes include
supplemental irrigation (SI) and deficit irrigation (DI) strategies. The former is used
by applying irrigation in selected phenological stages and is responsible for remarkable
responses even with low irrigation supplies. Its goals include achieving maximum yields
and eliminating yield fluctuations caused by water deficits [83,84]. The latter are widely
adopted in other drought-resistant crops, the most relevant example being grapevine
(Vitis vinifera) [85–87], where they are commonly supported by physiologically based and
soil-based monitoring tools [88–91].

Supplemental irrigation can be defined as the application of a limited amount of
water to increase and stabilize crop yields when rainfall fails to provide sufficient water
for plant growth [92]. Studies concerning the effect of supplemental irrigation on olive
trees’ productive responses involve mostly TD and MD orchards in semi-arid conditions
(e.g., [76,93–95]).
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Deficit irrigation strategies are based on supplying irrigation volumes lower than the
irrigation crop requirements under non-limiting growing conditions, that is, below the
potential ETc, allowing for water savings in regions with present or future limited water
resources without compromising production [96]. Three DI strategies can be considered:
(i) sustained (or continuous) deficit irrigation (SDI), (ii) regulated deficit irrigation (RDI),
and (iii) partial root-zone drying (PRD). Selected research regarding the use of DI strategies
in MD, HD, and SHD olive orchards is summarized in Table 3.

3.2.1. Sustained Deficit Irrigation

In SDI, the irrigation water used at any moment during the season is below the
crop evapotranspiration demand. This is based on the idea of allotting the water deficit
uniformly over the entire growing season [97]. Thereby, the water deficit increases pro-
gressively as the season advances due to a combination of the uniform application of a
reduced amount of water and the depletion of available soil water. This allows water stress
to develop slowly and for the plants to adapt to the water deficits when the soil presents
significant water storage capacity [96]. One of the first and most well-known studies on the
effects of SDI in olive trees was published by Goldhamer et al. (1994) [98], which tested
eight irrigation rates, ranging from 232 mm (Kc = 0.16) to 1016 mm (Kc = 0.85), in mature
olive trees, cv. ‘Manzanillo’, planted with a density of 239 trees ha−1, in Madera County,
California. They reported tree water stress occurring for Kc values of 0.55 or less, and
a strong correlation between fruit value (USD/ha−1) and applied irrigation (mm) up to
950 mm, indicating that higher amounts of irrigation water do not correspond to increased
economic water productivity when a threshold value is exceeded. Grattan et al. (2006) [74],
by studying the effect of different water-application treatments on oil yield in a SHD olive
orchard, cv. ‘Arbequina’, found that oil yields can be maximized over a rather broad range
of applied water, since increases in fruit yield with higher irrigation levels are offset by
the reduction in the percentage of oil extracted. In a MD orchard, cv. ‘Cobrançosa’, in
Northern Portugal, Fernandes-Silva et al. (2010) [82] reported that the oil yield increased to
more than double with SDI treatment when compared to rainfed conditions. Santos et al.
(2018) [99] studied the water use and productivity of the same cultivar in an orchard with
300 trees/ha−1, located in Alentejo, under two deficit irrigation treatments, and found that
the 70% of ETc strategy presented a higher yield and increased water use efficiency. Other
studies on the SDI technique applied in medium-to-dense olive orchards usually consist of
comparisons with other DI strategies, like RDI, and the reported results point to similar
yield responses [78,81,100].

3.2.2. Regulated Deficit Irrigation

The RDI strategy consists of reducing or withholding irrigation water during spe-
cific periods to manipulate plants’ vegetative and reproductive growth [13,101]. The less
sensitive period for olive trees to water deficits is midsummer, when it is possible to
reduce or interrupt irrigation without a significant yield reduction nor decreased oil qual-
ity [72,77,100] (Figure 3). However, during certain stages of the growth cycle, irrigation
supplies must balance, or be close to, the crops’ water needs (Figure 3). According to
Fernández et al. (2013) [102], these periods are:

• From the last stages of floral development to full bloom, normally in mid-April, when
water stress can affect flower fertilization.

• At the end of the first stage of fruit development, normally in June, when water stress
causes reductions in fruit size.

• After the midsummer period, normally from late August to mid-September, when a
marked increase in oil accumulation occurs.
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indicated as 1©, 2©, and 3©. MS is the midsummer period, normally from late June to late August,
during which olive trees are resistant to drought and irrigation can be reduced or withdrawn (adapted
from Fernández et al. (2013) [102]).

The studies regarding RDI strategies are usually based on timing the withdrawal of
or reduction in irrigation during midsummer and/or immediately before and after this
period [75,81,100,102]. Usually, different percentages of reduction in irrigation are tested
with the aim to understand the threshold at which the reduction in fruit yield caused
by stress can be offset by the maintenance/increase in the percentage of oil extracted, as
well as in the oil quality [75,102,103]. Additionally, trees’ water statuses are monitored,
and these measurements are used to define thresholds for irrigation scheduling. The
most frequently used physiological parameters are leaf (Y) or stem water potential (YStem),
measured at different times of the day, normally at predawn or midday [80,102,104–106];
stomatal conductance (gS); net photosynthesis (AN); and evapotranspiration rate (E) at the
leaf level [82,105,107].

3.2.3. Partial Rootzone Drying

The PRD technique requires that approximately half of the root system be maintained
in a drying state while the remainder of the root system is irrigated [85,101,108,109]. The
theoretical background of PRD is that irrigation of part of the root system keeps the upper
part of crops in favorable water conditions, while the drought in the other part of the roots
induces the formation of root chemical signals, mainly abscisic acid, which are transported
to the upper parts of the plants to induce reductions in stomatal conductance and shoot
growth [110–112]. The aim of PRD would then be to reduce water losses by transpiration
without affecting the yield. However, as stated by Fernández et al. (2006) [107], the studies
carried out to date have not always supported this hypothesis, and PRD and RDI do not
differ significantly in terms of water productivity [113].

In general, studies of the effects of PRD on olive trees grown under semi-arid condi-
tions have in common a slight PRD-induced yield reduction, although with high water
productivity and no reduction in oil yield [114–116].
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Table 3. Summary of selected studies on the effect of irrigation strategies on olive production in medium- to super-high-density olive orchards.

DI Strategy Cultivar Location Annual Rainfall (mm) Orchard Type Irrigation Treatments Main Results Reference

SDI Arbequina California, USA 533 (3-year average during
the experiment)

30-month commercial
orchard (1709 trees ha−1)

7 treatments:
1–15 (28), 2–25 (33), 3–40 (55), 4–57 (75),
5–71 (93), 6–89 (117), and 7–107 (140)%

ETc (1)

(SDI in treatments 1 to 6 and 1 to 5 in
the first and second year of the trial,

respectively)

SDI treatments of 70–75% ETc did not
reduce oil yields significantly; sustained

season-long irrigation deficit of
approximately 33–40% ETc maximized
oil quality (chemical parameters, flavor,

and stability).

Berenguer et al. (2004) [73]
Grattan et al. (2006) [74]

SDI Cobrançosa Vilariça Valley, Portugal 520
10-year-old commercial

orchard
(278 trees ha−1)

3 treatments:
R

30% ETc (SDI)
FI

With SDI treatment, the oil yield
increased to more than double that of

rainfed conditions; 25% oil yield
reduction in SDI compared to FI.

Fernandes-Silva et al.
(2010) [82]

SDI Frantoio Venturina, Italy 635 10-year-old experimental
orchard (513 trees ha−1)

3 treatments:
FI

46–52% ETc (SDI)
2–6% ETc (SI)

The fruit yield of the SDI trees was 68%
of that of FI; the fruit sets and numbers of
fruits of the FI trees were similar to those
of SDI trees and significantly higher than

the SI trees; the oil yield of the DI
treatment was 82% that of FI trees.

Caruso et al. (2013) [117]

SDI and RDI Picual Cordoba, Spain 602
18-year-old experimental

orchard
(278 trees ha−1)

5 treatments:
FI

75% ETc and no irrigation from
mid-July to mid-September (RDI)

75% ETc (SDI)
Adaptation to alternate bearing habit:
R during years of few or no crops and

FI during heavy crop years
R

Responses to deficits were similar for SDI
and RDI; yield responses to FI during the

bearing year and R in the nonbearing
year were less favorable than those

observed in SDI and RDI.

Moriana et al. (2003) [81]

SDI and RDI Arbequina Cordoba, Spain 502 (3-year average during
the experiment)

12-year-old experimental
orchard (408 trees ha−1)

3 treatments:
FI

25% IWR (SDI)
25% IWR and no irrigation in

midsummer (RDI)

RDI and SDI caused higher reductions in
fresh fruit yield than oil yield due to a

higher oil concentration in
deficit-irrigated trees

Iniesta et al. (2009) [100]

SDI and RDI Koroneiki Nicosia, Cyprus 428
17-year-old commercial

orchard
(278 trees ha−1)

2 treatments:
70% ETc (SDI)

70% ETc 2©→ 35% ETc MS→ 70% ETc
3©→ 35% ETc during maturity (RDI)

No significant differences between the
two irrigation treatments were found in
terms of morphology, physiology, fruit
yield, or oil quality; water productivity
was 1.4 and 1.0 kg oil m−3 in SDI and

RDI, respectively.

Siakou et al. (2021) [78]

RDI Arbequina Seville, Spain 534 4-year-old commercial
orchard (1667 trees ha−1)

3 treatments:
FI

60% IWR 2©→ 10% IWR MS→ 30%
IWR 3© (RDI1)

80% IWR 2©→ 20% IWR MS→ 100%
IWR 3© (RDI2)

RDI1 treatment showed the best balance
between water saving (72%), tree vigor,

and oil yield (26% reduction) when
compared to FI.

Fernández et al.
(2013) [102]



Water 2023, 15, 2486 11 of 20

Table 3. Cont.

DI Strategy Cultivar Location Annual Rainfall (mm) Orchard Type Irrigation Treatments Main Results Reference

RDI Arbequina Toledo, Spain 395 10-year-old commercial
orchard (1250 trees ha−1)

4 treatments:
FI

30% IWR in July and FI in the
remaining growth period (RDI1)
30% IWR in August and FI in the
remaining growth period (RDI2)

50% IWR in July and August and FI in
the remaining growth period (RDI3)

FI trees produced more oil and fruit with
higher oil percentages than RDI trees; the
oil yield with RDI1 was not significantly

reduced compared with FI and the oil
percentage was higher; RDI1 was the
most effective strategy, with 16% less

water applied relative to FI.

Gómez-del-Campo
(2013) [75]

RDI Arbequina Pencahue Valley, Chile 620 6-year-old commercial
orchard (1333 tress ha−1)

4 treatments:
FI

Irrigation cut-off from fruit set until
Ψstem = −3.5 MPa (RDI1)

Irrigation cut-off from fruit set until
Ψstem = −5.0 MPa (RDI2)

irrigation cut-off from fruit set until
Ψstem = −6.0 MPa (RDI3)

Fruit yield, fruit weight, and fruit
diameter decreased in RDI2 and RDI3;
total oil content and pulp/stone ratio

were not affected by the different
irrigation strategies; RDI treatments

averaged 83% to 53% of applied water
compared with FI.

Ahumada-Orellana et al.
(2017) [104]

PRD Picholine
marocaine Station Saada, Morocco 250 13-year-old experimental

orchard (278 tress ha−1)

4 treatments:
FI (100% ETc on both sides of the trees)
50% ETc on one side, switching every

irrigation (PRD1)
50% ETc on one side, switching every

two-irrigation (PRD2)
100% ETc on one side, switching every

irrigation (PRD3)

Slight yield reduction (15–20%) under
PRD1 and PRD2 was mainly due to a

decrease in fruit number; oil percentage
and oil acidity in the fruits did not show
any significant differences between PRD

treatments and the control; water use
efficiency increased (60–70%) under

PRD1 and PRD2 treatments.

Wahbi et al. (2005) [114]

PRD Chemlali Sfax, Tunisia 220 9-year-old experimental
orchard (625 trees ha−1)

4 treatments:
FI (100% ETc on both sides of the trees)
50% ETc on one side, switching every

15 days (PRD1)
50% ETc on one side, switching every

30 days (PRD2)
R

PRD2 achieved a slight cumulative yield
reduction (11%) compared to FI while

applying half of the irrigation quantity;
oil content showed an improvement with

increasing deficits.

Ghrab et al. (2013) [115]

PRD
Arbequina,

Arbosana, and
Chetoui

Sidi Bouzid, Tunisia 240 11-year-old commercial
orchard (1250 trees ha−1)

4 treatments:
FI (100% ETc on both sides of the trees)
100% ETc on one side, switching every

2-weeks (PRD1)
75% ETc on one side, switching every

2-weeks (PRD2)
50% ETc on one side, switching every

2-weeks (PRD3)

Shoot length was lower under PRD
irrigation treatments, mainly for

Arbequina and Chetoui; reducing
irrigation volumes by 25% and 50% with

PRD strategy compared to the control
increased oil yield and water

productivity, mainly for Arbequina
cultivar, without significant reductions in

yield components.

Abboud et al. (2019) [116]

Notes: (1) Values between brackets were used in the second year of the trial. R: rainfed; SI: supplemental irrigation; SDI: sustained deficit irrigation; RDI: regulated deficit irrigation;
PRD: partial rootzone drying; FI: full irrigation; IWR: irrigation water requirements (ETc—Crop evapotranspiration); MS: midsummer (late June to late August); 2©—period that occurs
at the end of the first phase of fruit development (normally in June) (Figure 3); 3©—after the midsummer period, around 3 weeks prior to ripening, when a marked increase in oil
accumulation occurs (normally from late August to mid-September) (Figure 3). Ψstem: stem water potential.



Water 2023, 15, 2486 12 of 20

4. Agroecological Practices
4.1. Non-Tillage, Cover Crops and Herbicide Reduction

Semi-arid Mediterranean regions are among the most productive areas in the world [118].
However, the soil has a low carbon content and is susceptible to degradation [119–121].
Semi-arid soils are exposed to erosion by random and heavy precipitation, absence of
herbaceous plant cover, and high rates of carbon mineralization related to high tempera-
tures and high soil pH [45,122,123]. Intensive tillage in olive farming promotes soil organic
matter degradation and general nutrient losses [124] (Table 4). Thus, tillage increases
CO2 emission at the expense of organic matter, contributing to global climate change. In
irrigated olive orchards such as HD or SHD, it is possible for non-tillage practices to be
implemented, fully mitigating these side effects. Normally, the organic matter in non-tillage
orchards is about 0.8% or more higher than tilled ones [125]. The contribution to carbon
sequestration of a non-tillage system with cover crops is 1.23 t C ha−1 year−1 [126] or
1.34 t C ha−1 year−1 [123] compared with bare soil. Non-tillage system avoids the prop-
agation of soil-borne diseases such as Verticillium dahliae, the main soil-borne disease for
this perennial species worldwide [56,127]. Preventing soil disturbance and minimizing the
contact of fungus mycelia from root to root decreases the infection rate.

Herbaceous vegetation can have a positive impact on erosion reduction, especially
in orchards planted on slopes [31], contributing to carbon and nitrogen sequestration and
acting as a nutrient buffer. Herbaceous cover also provides shelter and food for many
beneficial and pollinator insects. Nevertheless, vectors for the bacteria Xylella fastidiosa
could also live and feed on orchard weeds. Late in the spring, as the weeds dry out, these
vectors could fly from weeds to the olive canopy and infect the olive trees [128,129].

The generalized application of herbicides dramatically decreases the number of species,
plants, animals, and other living organisms present in an olive orchard ecosystem [125].
For instance, the abundance and diversity of nematodes is lower in bare soils treated with
herbicides, and is intermediate in non-herbicide areas [125]. Normally, tillage reduces the
number of arthropod species [130,131].

The use of herbicides in the total area of an orchard increases the rainwater runoff and
contributes to faster soil erosion and lower nutrient availability [132]. The use of herbicides
sprayed in stripes, as in rows of trees, seems to have a lower impact on soil erosion. Weed
species present on an olive orchard’s floor, like Conyza sp., present significant challenges
nowadays, as they are not effectively controlled by glyphosate spray treatment [133,134].
The eventual withdrawal of this herbicide will lead to the implementation of other non-
herbicide solutions for orchard floor management [135].

4.2. Pruning Biomass Recycling

Olive orchards show a carbon accumulation rate in tree structures of 0.58 t C ha−1 year−1,
whereas the maximum potential rate is around 1 t C ha−1 year−1 for perennial crops; 20 year-
old olive orchards can have up to 11.7 t C ha−1 in the trees’ permanent structures, and
pruning residues represent an additional 2 t C ha−1 year−1 [123]. The annual olive orchard
carbon sequestration is higher than the amount denoted for vineyards and lower than that
mentioned for other fruit trees [123].

In HD and SHD olive orchards, the pruning wood is normally shredded together
with the cover weeds, and its nutrients are slowly released over time. This is a way to
recycle nutrients and organic matter [136]. The presence of chopped wood pieces and weed
residues on the orchard floor has four main benefits. First, it decreases the rainwater runoff
speed and helps to prevent erosion [137]. Second, it promotes the rainwater infiltration rate,
which is quite important in the case of heavy rain events [136]. Third, it improves machines’
traction, preventing tractor or harvesters’ wheels from sliding. Fourth, crossed chopped
wood pieces act as a physical barrier over the floor, preventing soil compaction [138]. The
last two benefits are often disregarded.
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Table 4. Summary of selected studies on the effect of agroecological practices on soil factors in high-density orchards.

Soil Factor Tillage Pruning
Residues Herbicide Cover

Crops Organic Farming Main Results Reference

Erosion + − +A
−P − +T

−NT

Cover crops can reduce soil loss by more than 92% compared with tillage.
The annual water runoff increased with tillage (highest runoff: tillage or
full herbicide coverage; lowest runoff: cover crops and pruning residues).

Repullo−Ruibérriz de Torres
et al. [139]

Novara et al. [51]

Resistance to
penetration + − = − +T

–NT

With cover crops, the compaction decreased at a depth of 0.3 m. Tillage
reduced compaction just at the first 0.1 m of depth. Water availability

improved in the soil with cover crops. However, the infiltration
rate decreased.

Sastre et al. [140]

Water evaporation − − or
=

−A
=P + –T

+NT Cover crops increased the water consumption compared with tillage. Novara et al. [51]

Pesticide accumulation = = + = +Cu
– Other

Total Cu in olive orchard and vineyard soils is about 5–10 times the
concentration found in forest soils.

Organic vs. integrated pest management: the use of fewer pesticides, but
more cooper fungicides, is recommended.

Viti et al. [141]
Miloš and Bensa [142]

Biodiversity − = − + –T
+NT

Tillage and herbicides decrease soil biodiversity.
Tillage reduces the abundance of microarthropods.

Sánchez−Moreno et al. [124]
Vignozii et al. [131]

Velázquez−Martí et al. [143]
Repullo et al. [136]Organic matter and

carbon accumulation − + − + –T
+NT

Tillage negatively affected soil organic carbon pools in the interrow.
Cover crops vs. bare soil: increase of 1.23–1.34 t C ha−1year−1. Pruning

residues vs. removal: increase of 1–2 t C ha−1 year−1.

Nitrogen accumulation − + − + –T
+NT

The N in pruned residues from a SHD orchard was 59 kg ha−1. The N
contained in fruits was 7 kg t−1.

Zipori et al. [144]

Waterlogging + − or
= = − +T

−NT
The olive trees survived if soil salinity was <4 dS m−1. Wet flat land

increased tree mortality due to hypoxia. Ridge plantation can prevent this.
Aragüés et al. [145]

Diseases + − or
= − − +T

−NT
Tillage vs. cover crops or herbicides: verticillium wilt increased.

Drip irrigation increased verticillium wilt.

Calderón et al. [127]
López−Escudero and
Blanco−López [146]

Notes: + Increase, − decrease, = equal. A—total coverage, P—stripes of 1 m, T—organic farming with tillage, NT—organic farming with cover crops, IPM—integrated pest management.
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4.3. Adaptation of Cultivars

Due to the longevity of olive trees and the adaptation to the cultivation system, the
TD and MD olive orchards present different cultivars than the HD or SHD [14]. Therefore,
one can wonder whether old traditional varieties could be adapted to HD or SHD systems.
According to Marino et al. [147] some old Italian cultivars can be suitable for these systems.
In Portugal, the ‘Cobraçosa’ cv. seems to be adaptable to high-density systems. The
introduction of new cultivars suitable for SH or SHD orchards has a positive impact,
improving the overall genetic pool of olive orchards [14,148,149]. The use of rootstocks
with low vigor makes the adoption of traditional cultivars to SH or SHD systems possible.
This is a promising option for decreasing the high vigor normally associated with these
cultivars. Traditional cultivars grafted on such rootstocks could live together at a high
density, be adaptable to higher soil variability conditions, and present improved pathogen-
resistant patterns [150].

Some authors have also referenced the negative impact of tree density on biodiversity,
as in the case of bird population reduction [65,151]. Heavier machinery and increased
fertilizer, pesticide, and water usage are also said to negatively impact ecosystems’ biodi-
versity [24,152,153]. The generalized adoption of drip irrigation increases the Verticillium
dahliae in the soil. The inoculum density in all experiments was higher in wet than in dry
areas, and after 4 months of watering, the soil pathogen population increased considerably
in both wet and dry areas [146]. The inoculum density remained higher in the wet soil.

5. Conclusions

The target of this work was to focus on the sustainability of high- and super-high-
density olive orchards.

The increase in tree densities, the introduction of irrigation, and the development of
new training systems to facilitate mechanical pruning and harvesting have contributed
significantly to the intensification and expansion of olive oil and table olive production.
In recent years, concerns about the potential detrimental impacts of high-density olive
cultivation have emerged, bringing into question the trade-offs between production benefits
and environmental costs. Water-saving irrigation practices and more sustainable soil
management or other agroecological practices can mitigate the negative effects of climate
change and improve the ecosystem services of dense irrigated olive cultivation.

The systematization of the various olive cultivation systems allows us to gain a better
understanding of the olive orchard cultivation mosaic. The review and summary of studies
and publications on deficit irrigation strategies and agroecological practices in dense olive
orchards can contribute towards optimized options in terms of water, soil, and biodiversity
management in order to enhance the health of these types of agroecosystems.
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