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A B S T R A C T

Landscape and crop management are important concepts for conservation biological control as they can influ-
ence the abundance of natural enemies. In this work we accomplished a multi-scale study focused on the effect of
landscape structure and crop management on the olive moth, Prays oleae (Bernard), an important pest of the
olive tree (Olea europaea L.). The olive moth was collected in different olive groves managed under organic
farming and integrated production and surrounded by different landscape structures. Generalized additive mixed
models were used to analyze the response of the pest to (i) landscape composition and configuration indices, (ii)
the management system and (iii) pesticides applications at different scales. Results indicated that the landscape
composition, through the effect of the Simpson’s diversity index, negatively influenced P. oleae abundance and
that the effect was evident at larger scales. Also, the landscape configuration negatively affected P. oleae at larger
scales. However, neither the crop management system nor the pesticide applications affected P. oleae abundance.
This study emphasizes that the preservation or implementation of diverse and complex landscapes can con-
tribute to maintain lower population levels of P. oleae when compared with homogenous landscape areas.

1. Introduction

The olive tree (Olea europaea L.) is a perennial crop with increasing
interest all over the world (FAOSTAT, 2019). Nowadays, it is cultivated
in all regions with suitable climatic conditions and its products have an
increasing economic relevance (Bartolini and Petruccelli, 2002;
FAOSTAT, 2019). Traditionally managed olive groves are usually sur-
rounded by a complex landscape mosaic which includes different patch
types, such as scrublands, grasslands, forest areas or other perennial
crops (e.g., almond trees and vineyards) (Fleskens, 2007). However, in
recent years, strong market pressure has encouraged growers to in-
tensify the production, involving some impacts such as the simplifica-
tion of the agricultural landscape, the presence of pesticide residues in
soils, vegetation and olives, the degradation of natural resources, the

loss of biodiversity and the development of insecticide resistance by
pests (Hawkes et al., 2005; Tscharntke et al., 2007; Tous et al., 2011;
Samnegårdg et al., 2018). As a consequence, ecosystem services such as
biological control, pollination and landscape values, may be en-
dangered (Koh and Holland, 2015; Teixeira Saturni et al., 2016).

This crop is attacked by several pests, such as the olive moth, Prays
oleae (Bernard), which causes important production losses (Bento et al.,
2001). The olive moth is a microlepidoptera belonging to the Praydidae
family. It has three generations a year and larvae feed on different olive
tree organs. Adults of the phyllophagous generation emerge in the be-
ginning of the spring, lay the eggs of the anthophagous generation on
the floral buttons and the newly hatched larvae feed on the olive tree
flowers until pupation. Adults emerge at the end of the spring and lay
the eggs of the carpophagous generation on the calyx of the young olive
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fruits. Larvae bore into the olive stone and feed on the seed. In the end
of the summer and in the beginning of the autumn, adults emerge and
lay the eggs of the phyllophagous generation on the olive leaves. Larvae
of the phyllophagous generation dig galleries and feed on leaves, where
they overwinter till the beginning of the spring (Arambourg, 1986).

Several studies have addressed the potential effect of the landscape-
scale (i.e., landscape structure) and/or local-scale (i.e., management
practices within field) on different functional groups, such as pests and
their natural enemies, suggesting that the complexity, heterogeneity
and low impact practices can contribute to maintaining and enhancing
the biological control of pests (Bianchi et al., 2006; Tscharntke et al.,
2007; Zhao et al., 2016; Lefebvre et al., 2016; Porcel et al., 2018).
Paredes et al. (2013a) showed that the abundance of natural enemies
was, in general, more influenced by herbaceous and large woody ve-
getation adjacent to the crop than by small woody vegetation. Martins
da Silva et al. (2017) found that carabid species varied with the specific
management practices in the olive grove as well as with local and linear
features around the groves. However, Albertini et al. (2016) did not
find significant correlations between the occurrence of natural areas
close to the olive groves and the abundance of predaceous Coleoptera in
the crop area. Other landscape characteristics, such as the landscape
connectivity, positively affected the parasitism rate of the olive fruit fly
Bactrocera oleae (Rossi) (the key pest of the olive tree) (Boccaccio and
Petacchi, 2009). For pests, Paredes et al. (2013b) found lower abun-
dances of the olive psyllid Euphyllura olivina (Costa) (an occasional pest
of the olive tree) and P. oleae in olive groves surrounded by non-crop
vegetation areas of herbaceous and woody vegetation, as well as in
olive groves integrating small patches of woody vegetation. Ortega and
Pascual (2014) showed that the reduction of the abundance of B. oleae
was correlated with the landscape complexity and Ortega et al. (2016)
found that the relationships between the landscape structure and the
abundance of B. oleae depended on the spatial scale. Sáenz Posada
(2013) showed that P. oleae abundance decreased in more diverse
landscapes and increased in more irregular shaped patches located in
southern Spain.

At a local scale, i.e., considering the effect of the olive crop man-
agement on arthropods, usually organic farming benefited natural
enemies. For example, organic olive groves presented higher abundance
and richness of spiders in the canopy, higher predation rates of B. oleae
pupae and larger and more complex arthropod food-webs offering
better conditions for biological pest control than conventional groves
(Picchi et al., 2016, 2017; Morente et al., 2018). Moreover, Villa et al.
(2016) determined that low impact agricultural practices favored P.
oleae parasitism.

In this context, our objective was to analyze the variation of P. oleae
abundance in olive groves under different management systems (or-
ganic and integrated) and across an increasing gradient of landscape
simplification at different landscape scales. We hypothesized that: (i)
more diverse landscape composition and (ii) more complex landscape
configuration negatively influenced P. oleae abundance and (iii) the
management system affected P. oleae abundance.

2. Material and methods

2.1. Study sites

The study was conducted in 2011 in 17 olive groves, nine were
located in the area surrounding Mirandela municipality, in Trás-os-
Montes region, northeastern Portugal and eight were located in the area
surrounding Beja municipality, in Alentejo region, south of Portugal.
Both regions are typically Mediterranean (characterized by hot and dry
summers and mild and moist winters) (Rundel et al., 2016). The study
sites were in the same climatic zone in both regions, providing similar
site conditions in terms of mean annual rainfall (about 571mm in Beja
and 524mm in Mirandela) and temperature (the mean maximum
temperature is 22.5 °C in Beja and 22.7 °C in Mirandela and the mean

minimum temperature is 10.4 °C in Beja and 9.6 °C in Mirandela)
(IPMA, 2019). The mean altitude is 196m in Beja and 393m in Mir-
andela.

The study areas in Alentejo were in average 18 km apart (2 km
minimum and 45 km maximum) and in Trás-os-Montes 5 km apart
(2 km minimum, 15 km maximum). Main characteristics of the selected
olive groves are presented in Appendix A (Table A.1 and Table A.2).
From the 17 study areas, eight represented organic farming systems and
nine were olive groves managed under integrated production.
Fungicides and insecticides applied in each grove are shown in
Appendix A (Table A.3 and Table A.4). The landscape surrounding the
central sampling area in each olive grove ranged from heterogeneous
landscape with small surrounding patches to homogeneous landscape
with large areas of super-intensive olive groves.

2.2. Sampling of P. oleae

Three delta traps placed 50m apart and baited with P. oleae sex
pheromone (Z)-7-tetradecenal (Biosani, Palmela, Portugal) were in-
stalled in a central area of each olive grove. The traps were hung on
olive tree branches (at about 2m height). Captures were recorded on a
weekly basis from April to December 2011.

2.3. Landscape metrics

Four circular areas (buffer), with radii of 500, 600, 750 and 1000m,
were nested around each study site (Fig. 1). The largest buffer did not
overlap among the different fields sites in order to avoid spatial auto-
correlation. Land-use classes occurring across study sites were obtained
from “Carta de Uso e Ocupação do Solo de Portugal Continental para
2007″ (COS2007). The different types of land use and their percentage
cover (area) within each circle were assessed to determine the land-
scape composition and configuration. Land-use classes considered to
calculate the landscape indices were: artificial areas (A), deciduous
woods (BD), evergreen woods (BE), other crops (C), grasslands with
disperse oaks (DH), conifers (F), scrublands (M), olive crops (O),
grassland (P), river (RB), water (W).

At the class level, the most common land uses in the study regions,
i.e., (i) the percentage of olive crops (O), (ii) the percentage of other
crops (C) and (iii) the percentage of scrublands (M), were selected for
further analysis. At the landscape level the following metrics were
considered: (i) number of patches (NP): number of patches within the
buffer; (ii) mean patch size (MPS): mean area of patches (hectares); (iii)
patch size coefficient of variation (PSCV): measurement of the variability
among patches as a percentage of the mean patch size (it results from
the patch size standard deviation (hectares) divided by the mean patch
size (hectares) and multiplied by 100); (iv) the total edge (TE): total
edge length of all patch types (meters); (v) mean patch edge (MPE):
average amount of edge per patch (meters/patch) (vi) mean shape index
(MSI): quantifies the patch shape by measuring the average patch shape
as the sum of the perimeter of each patch divided by the square root of
patch area (ha) for all patches, divided by the number of patches; (vii)
area weighted mean shape index (AWMSI): weights MSI according to the
size of the patches, weighting more heavily larger patches than smaller;
(viii) the mean perimeter-area ratio (MPAR): quantifies the shape com-
plexity, resulting from the sum of each patch perimeter/area ratio di-
vided by the number of patches (meters/ hectare); (ix) mean patch
fractal dimension (MPFD): quantifies the degree of complexity of the
landscape by measuring the complexity of a polygon by relating peri-
meter and area; (x) area-weighted mean patch fractal dimension
(AWMPFD): weights MPFD according to the patches size; (xi) Shannon`s
diversity index (SDI): quantifies the landscape composition (more sen-
sitive to richness than evenness); and (x) Simpson’s diversity index (SEI):
quantifies the landscape composition (less sensitive to richness and
more to common patches), and it represents the probability that any
types selected at random would be different types (McGarigal and
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Marks, 1995). The software Patch Analyst for ArcGIS, version 9.3.1
(ESRI, Redlands, California) was used to calculate landscape metrics.

2.4. Data analysis

All analyses were performed using R software version 3.5.1 (R Core
Team, 2018).

2.4.1. Landscape description
Values of the landscapes indices were plotted against the orchards in

the south and north of Portugal at different scales (500m, 600m, 750m
and 1000m buffers) in order to describe the landscapes.

To synthetize that information a principal component analysis
(PCA) based on the correlation matrix of the landscape indices was
performed and presented as supplementary material (Fig. A.1), the
correlation biplot of the two first PCs were represented in order to vi-
sualize the landscapes for each PCA. PCAs were performed using the
function prcomp.

2.4.2. Influence of the landscape variables on P. oleae abundance
Four separated generalized additive mixed models (GAMMs), one

for each scale (500m, 600m, 750m and 1000m), were performed to
analyze P. oleae response to landscape variables along the sampling
period at the different scales. For that, gamm4 function from “gamm4″
package (Wood and Scheipl, 2016) in R was used.

Prior to run the model, explanatory landscape variables were se-
lected using the Variance Inflation Factor (VIF) criteria to avoid

collinearity. Collinearity between explanatory variables is associated
with several risks related with the inaccuracy of the model, the decrease
of the statistical power or the exclusion of significant explanatory
variables during the model selection (see Graham (2003) for further
details). This is particularly relevant in landscape studies: some land-
scape or class metrics may be partially or completely redundant.
Sometimes they quantify a similar or identical aspect of landscape
pattern or some aspects of landscape pattern under investigation may
be statistically correlated (McGarigal and Marks, 1995). Several
methods have been addressed to minimize the risks (e.g., Graham,
2003; Zuur et al., 2010), although all of them involve a certain degree
of subjectivity. In this study landscape indices with minimum colli-
nearity were selected. The metrics with the highest VIF were sequen-
tially dropped until all VIFs were lower than a determined threshold.
Some authors recommend thresholds of 10 and others recommend a
more restrictive threshold (for example, VIF < 3) (Graham, 2003 and
references therein, Zuur et al., 2010 and reference therein). Following
Zuur et al. (2010) only explanatory variables with VIF < 3 were used
(maximum VIF was 1.75, 1.82, 2.18 and 2.85 in GAMM for 500, 600,
750 and 1000m buffers respectively). The variable latitude (Y), as
continuous variable, was maintained in all cases because of its potential
importance in explaining differences between northern and southern
olive orchards. After the selection of explanatory variables only the
potential relevant interactions were included in the models in order to
avoid convergence problems. Thus, the interactions between latitude
and O (Y:O), due to the relevance of the olive orchard for this study,
and between latitude and SDI (Y:SDI) or SEI (Y:SEI), due to the fact that

Fig. 1. Location of the study areas. On the left, the study areas at the north and south of Portugal are shown. At the right the location of the sampled olive orchards in
the north and south of Portugal are shown.
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sites in the north and in the south of the country differ in landscape
diversity and is amply referred as important in the literature (e.g.,
Bianchi et al., 2006), were studied. The interactions NP:O, NP:M, and
between the metrics AWMSI and PSCV (both resulting from ratios
where the denominator is MPS), and MPS were studied to analyze their
marginal effects.

In each of the four models, explanatory variables and interaction
previously selected were used as fixed factors and explanatory variables
were centered. The location of the orchards was used as a random ef-
fect. Due to the non-linear nature of the P. oleae abundance along the
year, the Julian days variable was fitted as a smoother. The negative
binomial distribution was used to account for overdispersion. Since
gamm4 does not estimate the dispersion parameter, different values of
the dispersion parameter were applied to all the models until the lowest
value of Akaike Information Criterion (AIC) was encountered. Then,
that dispersion parameter was used in the models. Backward selection
using the AIC was used to find the optimal model (AIC calculated for
these models are comparable once all the models were fitted with
gamm4 function and therefore AIC calculation follows the same criter-
ions for all models). The models were validated by plotting residuals
versus fitted values to assess the absence of patterns in the residuals and
a generalized additive model (GAM) was fitted with the residuals as
response variable and a smooth of the predicted values as explanatory
variable to detect non-linear patterns. A plot of the residuals versus
each covariate in the model and not in the model was used to in-
vestigate model misfit and a GAM was fitted with the residuals as re-
sponse variable and a smooth of each predictor in the GAMM as ex-
planatory variable to detect non-linear patterns (Zuur et al., 2014).

In summer, P. oleae is at larval stage, therefore, captures of P. oleae
adults were zero or very low (lower than 5) during several weeks. In
this work, the interest was focused in P. oleae adults, therefore, those
dates were excluded from data analyses.

2.4.3. Influence of management system on P. oleae abundance and
pesticides applications for pest control

Two GAMMs were performed. The first one analyzed the P. oleae
response to the management system of the orchards (integrated or or-
ganic) along the sampling period. Given that management system is an
artificial classification defined by individual management practices
which can affect arthropod populations and pesticide application can be
the most impacting one, a second GAMM analyzed the application of
pesticides for pest control (application or no application) along the
sampling period. The response variable was P. oleae abundance and the
explanatory variables were the management system or the application/
absence of application. The location of the olive groves was used as a
random effect and the Julian days were fitted as a smoother in both
cases. The negative binomial distribution was used to account for
overdispersion. Model fit and validation was performed as in the pre-
vious section.

3. Results

3.1. Landscapes description

The descriptive statistical analysis showed that the distributions of
the landscape variables in the sampled olive orchards were similar for
each scale (Fig. A.1). About the landscape composition, the study sites
in the north of Portugal were generally more diverse and had a higher
percentage of scrublands and in the south were more variable (Fig. 2).
Concerning the landscape configuration, Fig. 2 shows that the northern
sites had larger number of patches (NP), mean shape indices (MSI), mean
patch fractal dimensions (MPFD) and variants weighted by area (AWMSI
and AWMPFD) but smaller mean patch sizes (MPS) and mean patch edges
(MPE). This indicates the occurrence of more irregular and complex
landscapes in the northern study sites independently of the patch size.

Considering the different scales (500m, 600m, 750m and 1000m),

the position of the study sites and landscape variables were similar in
each biplot (Fig. A.1). Study sites were grouped by their location (in the
north or in the south of Portugal) indicating the occurrence of different
landscape compositions and configurations in each latitude (Fig. A.1).

Additionally, olive orchards presented bigger MPS than other land
uses in the north. In the south, MPS was bigger for olive orchards fol-
lowed by other crops, evergreen woods and grasslands with disperse
oaks in the south (Fig. 3).

3.2. Selection of landscape variables for GAMMs

After dropping the metrics with higher VIFs, the selected metrics for
GAMMs in each scale were: (i) JD for 500m; (ii) JD and NP for 600m;
(iii) JD, Y and SEI for 750m; and (iv) JD, Y, SEI and MSI for 1000m.

3.3. Influence of the landscape variables on P. oleae abundance

The GAMMs for P. oleae response to the variables of the landscape
configuration and composition at the different scales with the Julian
days, showed that P. oleae abundance varied throughout the year ac-
cording to the three generations of the pest (Fig. A.2), being the smooth
function of the Julian days highly significant in all models (Table 1).
The predictions were similar for the four models (Fig. 4 for visualizing
the model at 500m and Fig. A.3, A.4 and A.5 for visualizing the mag-
nitude and direction of the significant effects). No misfit was found in
the validation of the final models. Model (Fig. 4) and over-dispersion
parameters (between 0.82 and 0.83 for all models) showed a slight
overfit. Some heterogeneity was shown in the four residuals vs. fitted
values plots. Therefore, despite the observed significances, higher p-
values should be considered with care. However, the GAM fitted with
the residuals as response variable and the smooth of the predicted va-
lues as explanatory variable did not detect non linearity (500m:
F=0.658, edf= 1.680, p-value=0.557; 600m: F=1.152,
edf= 1.941, p-value=0.374; 750m: F=1.021, edf= 1.853, p-
value= 0.420; 1000m: F=0.704, edf= 1.697, p-value=0.54).

In relation to the landscape composition (Table 1), the interaction
between the number of patches and scrublands (NP:M) as well as the
main effect of scrublands (M), latitude (Y) and other cultures (C) were
dropped from the model fitted at 500m. At 600m, the interaction be-
tween the number of patches and scrublands (NP:M) and between la-
titude and the Simpson´s diversity index (Y:SEI.), as well as the main
effects of Y, SEI, M and C were dropped from the model. At 750m M
and C were dropped from the model but the interaction Y:SEI corre-
sponded to a significant decrease of P. oleae abundance. At 1000m, M
and C were dropped from the model and P. oleae abundance sig-
nificantly decreased with the interaction Y:SEI, These results indicate
that at smaller scales (500m and 600m), P. oleae abundance was not
affected by the landscape composition. However, in larger scales (750
and 1000m), P. oleae abundance decreased with the increase of latitude
together with the landscape diversity.

Considering the landscape configuration, the main effect of NP was
dropped from the model at 500m but at 600m P. oleae decreased with
NP. At 750m none configuration variable was included in the model. At
1000 MPAR was dropped from the model but P. oleae decreased with
the increase of the mean shape index (MSI). These results indicate that
only at the lowest scale (500m), P. oleae did not decreased with the
landscape complexity.

3.4. Influence of management system and pesticide applications on P. oleae
abundance

According to the GAMMs, neither the management system nor
pesticide applications affected P. oleae abundance (management
system: estimate= 0.092; SE=0.170; Z=0.542; p-value=0.588;
pesticide applications: estimate= 0.173; SE=0.162; Z=1.071; p-
value= 0.284). No misfit was found in the validation of the final
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Fig. 2. Boxplots for the values of the landscape indices of the buffers (500, 600, 750 and 1000m) across the study areas at the south (white) and north (grey) of
Portugal. The black line within the box represents the median, the upper and lower part of the box include the first and the third quartiles receptively, and whiskers
are the highest and lowest values within 95 % confident interval of the median. Points represent values outside the 95 % the confident interval.

Fig. 3. Mean Patch Size (MPS)± SE (ha) of the dif-
ferent land uses at the four buffer sizes (500m; 600m;
750m; 1000m). Land uses: artificial areas (A), decid-
uous woods (BD), evergreen woods (BE), other crops
(C), grasslands with disperse oaks (DH), conifers (F),
scrublands (M), olive crops (O), grassland (P), river
(RB), water (W).

Table 1
GAMM outputs for estimated regression parameters and standard errors with negative binomial distribution for the olive moth abundance. Landscape variables at the
different scales (buffers) are the fixed factor and olive orchard is the random factor. Julian days are estimated with a smooth function. AWMSI: area weighted mean
shape index; C: percentage of other crops; M: percentage of scrublands; MPAR: mean perimeter-area ratio; MPS: mean patch size; NP: number of patches; O:
percentage of olive crops; PSCV: patch size coefficient of variation; SDI: Shannon`s diversity index; SEI: Simpson’s diversity index; Y: latitude; s(JD): smooth of the
Julian days; edf: effective degrees of freedom of the smother.

GAMM for 500 m buffers GAMM for 600 m buffers GAMM for 750 m buffers GAMM for 1000 m buffers
Fixed effect Estimate SE z-value p-value Fixed 

effect
Estimate SE z-value p-value Fixed 

effect
Estimate SE z-value p-value Fixed 

effect
Estimate SE z-value p-value

Intercept 5.56 0.15 38.27 < 0.001 Intercept 4.653 0.082 56.443 < 0.001 Intercept 4.726 0.073 64.630 < 0.001 Intercept 4.761 0.081 58.938 < 0.001
NP -0.152 0.076 -2.006 0.045 Y -0.041 0.069 -0.602 0.547 Y 0.006 0.078 0.083 0.934

SEI -0.107 0.080 -1.327 0.184 SEI -0.085 0.084 -1.017 0.309
Y:SEI -0.246 0.079 -3.097 0.002 MSI -0.136 0.067 -2.033 0.042

Y:SEI -0.198 0.082 -2.402 0.016
Smooth term edf Ref.df Chi.sq p-value Smooth 

term
edf Ref.df Chi.sq p-value Smooth 

term
edf Ref.df Chi.sq p-value Smooth 

term
edf Ref.df Chi.sq p-value

s(JD) 4.678 0.087 53.9 < 0.001 s(JD) 8.78 8.78 838.9 < 0.001 s(JD) 8.77 8.77 878.60 < 0.001 s(JD) 8.77 8.77 873.20 < 0.001
Dropped 
variables and 
interactions

Y; MPAR; C; M; NP; NP:M Y; SEI; M; C; NP:M; Y:SEI M; C MPAR; M; C

M. Villa, et al. Agriculture, Ecosystems and Environment 294 (2020) 106854

5



models. Some heterogeneity was shown in the residuals vs. fitted values
plots. However, the GAMs fitted with the residuals as response variable
and the smooth of the predicted values as explanatory variable did not
detect non linearity (management system: F = 2.12, edf= 1.68, p-
value=0.545; pesticide application: F=0.74, edf= 1.724; p-
value=0.519).

4. Discussion

Several results obtained in this study indicated that P. oleae abun-
dance was influenced by (i) the landscape composition and (ii) the
landscape configuration but not by (iii) the crop management system or
the pesticide applications. Both landscape composition and configura-
tion effects depended on the scale. Additionally, these results reflected
the landscape features of the study sites located in the north (more
heterogeneous) and in the south (more homogeneous) of the country.
Although the northern and southern climatic conditions were similar,
the effect of the latitude could be related with differences in tempera-
ture and humidity along the year, which are important factors for P.
oleae development. Low relative humidity (RH) and high temperature
can increase the mortality of eggs and young larvae. Montiel Bueno
(1981) referred that a RH of 60 % or lower, together with 30 °C or
higher caused 100 % mortality of eggs, while 70 % RH and 25 °C caused
9.8 % mortality of eggs of P. oleae. The landscape composition and
configuration was different between northern and southern sites, being
the northern sites more diverse and complex and the southern more
variable. Lastly, the variation of the scale did not result in the variation
of landscape indices at both latitudes.

In relation to the landscape composition, P. oleae abundance de-
creased with the increase of the landscape diversity index (SEI) in
northern latitudes at larger scales (750 and 1000m). These results are
in agreement with Sáenz Posada (2013) that found a negative corre-
lation between Shannon`s diversity index (SDI) and both P. oleae cap-
tures and the damages caused by the phyllophagous and anthophagous
generations at larger scales (750m, 1000m, 1500m and 2000m) but
not at smaller scales (500m and 600m). However, they found a posi-
tive correlation between the SDI and the damages caused by the car-
pophagous generation. Both studies pointed to a potential decrease of P.
oleae abundance (mainly the phyllophagous and anthophagous gen-
erations) with the increase of the landscape heterogeneity. Paredes
et al. (2013b) showed that areas of herbaceous vegetation and areas of
woody vegetation within olive groves were correlated with a decrease
of P. oleae abundance. Moreover, Costa et al. (2020) found that the

abundance of P. oleae was negatively correlated with the amount of
forest cover surrounding olive groves at a 1000m scale.

Thus, in relation to our first hypothesis, i.e., P. oleae abundance
could be negatively influenced by a highly diverse landscape, we ver-
ified that the effect of the landscape composition on P. oleae abundance
was more noticeable at larger scales. A potential increase of the density
of natural enemies with the landscape diversity and with the scrubland/
herbaceous areas may have triggered such reduction. For example, the
Anthocoridae Anthocoris nemoralis (Fabricius), which may consume
eggs of the anthophagous generation of P. oleae, was favored by the
occurrence of large woody patches surrounding the olive groves
(Paredes et al., 2013a). Similar results were obtained by Boccaccio and
Petacci (2009) who showed that the parasitism rate of the olive fly was
favored by the occurrence of woodlands (forest and maquis). Also the
abundance of the olive fruit fly decreased in the presence of scrublands
at the largest scale (1500m) (Ortega et al., 2016). Thus, the landscape
management could affect other pests, such as the olive fruit fly, as well
as natural enemies. However, further studies should focus on clarifying
the landscape effects on other pests and their natural enemies.

Our second hypothesis considered that more complex landscape
configurations could negatively influence the abundance of P. oleae.
The decrease of P. oleae abundance was correlated with the increase of
landscape complexity (NP and MSI) at 600m and 1000m, respectively
but not at 500m. Contrarily, Sáenz Posada (2013) showed that MSI was
generally positively correlated with captures and damages of the
phyllophagous and anthophagous generations and negatively corre-
lated with the carpophagous generation.

We thirdly hypothesized that the management system affects P.
oleae abundance. In this study, different management systems (in-
tegrated production or organic farming) did not affect the pest.
According to the “intermediate landscape complexity hypothesis” the
local conservation management is more effective in moderately simple
agricultural landscapes, rather than in either cleared (i.e. extremely
simplified), where there is no capacity for response, or in highly com-
plex landscapes (which could be the case of the present work), where
potential response is already saturated (Tscharntke et al., 2012; Jonsson
et al., 2015). Following Tscharntke et al. (2005), the general complex
landscape structure of the study areas might compensate the biodi-
versity loss caused by local management and enhance enemy popula-
tion densities resulting in biological control benefits. Also, Villa et al.
(2016) pointed out the landscape heterogeneity as a potential factor for
mitigating some effects of tillage or herbicide application. In agree-
ment, Jonsson et al. (2015) tested the effect of supplementary floral
resources in kale Brassica oleracea L. fields surrounded by a gradient of
moderately simple to highly complex landscapes on parasitism rates
and abundance of aphids (mostly Brevicoryne brassicae L.) and diamond-
back moths Plutella xylostella L. and found that fields surrounded by
moderately simple landscapes responded better to local management.
However, Costa et al. (2020) found differences according to the local
management, with higher abundances of P. oleae in mid-complex olive
orchards than in low or high complex orchards, in farms ranked from
high complex (traditional orchards with low inputs of agrochemicals) to
low complex (intensive farms with several seasonal agrochemicals
sprays for pest control). This result was assumed to be related with the
level of agrochemicals use, which would increase along the in-
tensification level. In this study, however, pesticide use, which was
tested due to its potential impact on pests, did not show effect on P.
oleae abundance. This result probably was due to the fact that pesticides
were used mainly to reduce B. oleae populations or some diseases, and
applications do not consider the cycle of P. oleae, reducing their ef-
fectivity. Nevertheless, though management or pesticides did not affect
P. oleae abundance, they could affect other pests, natural enemies or
processes.

Finally, in this study, the complex landscape structure (both com-
position and configuration) failed to reduce the olive moth at smaller
scales, remarking the importance of analyzing multiple spatial scales.

600

400

200

0
100 150 200 250 300

Fig. 4. Observed values (+) and GAMMs predicted values (o, ▲) of olive moth
captures (counts) along the year (Julian days) at 500m in the southern sites
(black and red) and northern sites (grey and green). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article).
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More works have found that natural habitats failed in supporting bio-
logical control. For instance, Muneret et al. (2019) analyzed the effect
of a gradient of natural habitats and organic farming land cover on
Tortricidae Lobesia botrana (Dennis & Schiffermüller) and Eupoecilia
ambiguella (Hübner), important grape moth pests. These authors found
that organic farming enhanced biological control, however increasing
the proportion of seminatural habitats had no or negative effects on the
potential biological control. In the Colombian Andes, Poveda et al.
(2012) found that simplified landscapes (with high percentage of
cropped land and low habitat-type diversity) encouraged the presence
of the potato moth Tecia solanivora (Povolný), but reduced the richness
and abundance of other herbivores and their natural enemies. Some
hypotheses can explain the causes of those failures (see Tscharntke
et al., 2016 for more details). In the present study, other processes, such
as intraguild predation among natural enemies could constrain pest
control (Martin et al., 2013). Also mortality during dispersion could be
more evident at larger scales. This parameter has been previously
pointed out as being related with the effect of landscape configuration
indices on B. oleae abundance (Ortega et al., 2016) and has been amply
studied in some generalist natural enemies, such as for the pre-ovipo-
sitory migration flights of chrysopids (Duelli, 2001). However, little is
known about P. oleae’s dispersion, such as barriers and limitations or
flight distances and periods of dispersion. In the present study, diversity
of land uses, rather than percentage of scrublands (as percentage of
natural habitats), resulted in a pest abundance reduction. This high-
lights the importance of analyzing several landscape variables for
measuring complexity, which could lead to a deeper understanding of
the ecological processes in agroecosystems. In addition, inter-annual
variation may alter conclusions about patterns in ecological processes
and arthropods abundance (Villa et al., 2016; Paredes et al., 2013b;
Plećaš et al., 2014). Similarly, long term investigations are key to obtain
reliable management recommendations.

In sum, in this study, a decrease of P. oleae abundance was corre-
lated with the landscape composition, particularly with landscape di-
versity, and with landscape configuration at larger scales. The latitude
showed to be determinant for the number of P. oleae captures at larger
scales and the management system and pesticide applications effects
might have been mitigated by the effects of landscape structure,
showing the importance of landscape management. These factors
should be considered when designing strategies for controlling pests in
olive orchards.
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