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Mixed linear models are a versatile and powerful tool for 
analysing data collected in experiments in several areas. 
A mixed model is a model with orthogonal block structure, 
OBS, when its variance–covariance matrix is of all the positive 
semi-definite linear combinations of known pairwise orthogo-
nal orthogonal projection matrices that add up to the identity 
matrix. Models with commutative orthogonal block structure, 
COBS, are a special case of OBS in which the orthogonal 
projection matrix on the space spanned by the mean vector 
commutes with the variance–covariance matrix.
Using the algebraic structure of COBS, based on Commuta-
tive Jordan algebras of symmetric matrices, and the Carte-
sian product we build up complex models from simpler ones 
through joining, in order to analyse together models obtained 
independently. This commutativity condition of COBS is a 
necessary and sufficient condition for the least square esti-
mators, LSE, to be best linear unbiased estimators, BLUE, 
whatever the variance components. Since joining COBS we 
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obtain new COBS, the good properties of estimators hold for 
the joined models.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Mixed models are a versatile and powerful tool for analysing data collected in ex-
periments, see for example [12], and, over the years, they have been applied to several 
areas such as biological and medical research, animal and human genetics, agriculture 
or industry.

A mixed model whose variance–covariance matrix is of all the positive semi-definite 
linear combinations,

m∑
j=1

γjQj

of known pairwise orthogonal orthogonal projection matrices, POOPM, Q1 . . . Qm, that 
up to In, is a model with orthogonal block structure, OBS. These models, introduced 
by Nelder [16,17], have been intensively studied [10,13] and continue to play a central 
part in the theory of randomised block designs [2,3].

OBS in which the matrices Q1 . . . Qm commute with T , the orthogonal projection 
matrix on the space spanned by the mean vector, are called models with commutative 
orthogonal block structure, COBS. This special class of OBS, was introduced in [9] and 
has also been considered by Santos et al. [19], Nunes et al. [18], Carvalho et al. [4], 
Ferreira et al. [7], Carvalho et al. [5] and Bailey et al. [1]. Therefore COBS are models 
with OBS whose variance–covariance matrix commutes with the orthogonal projection 
matrix on the space spanned by the mean vector. This commutativity condition is a 
necessary and sufficient condition for the least square estimators, LSE, to be best linear 
unbiased estimators, BLUE, whatever the variance components [23].

In order to build up complex models from simple ones, Mexia et al. [15] introduced 
models crossing and models nesting, two operations between models based on the binary 
operations on CJAS, Kronecker product of CJAS and the restricted Kronecker product 
of CJAS, introduced in Fonseca et al. [8].

Now we introduce models joining, a possible alternative to models crossing and models 
nesting, with the same purpose to analyse together models obtained independently.

Let y(1) . . . y(n) be the observations vectors of n models with null cross-covariance 
matrices, then

y =

⎡
⎢⎣

y(1)
...

y(n)

⎤
⎥⎦
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will be the observations vector of the model obtained joining the initial models. We will 
consider this operation for models with commutative orthogonal block structure, COBS.

Since the technique used for building joined models rests on the algebraic structures of 
COBS and the Cartesian product of CJAS, in the next section we present some results 
on commutative Jordan algebras that will be useful on studying both the algebraic 
structures of OBS and COBS and in carrying out models joining.

2. Commutative Jordan algebras of symmetric matrices

Jordan algebras, JA, were introduced by Jordan et al. [11] in their paper devoted to 
the axiomatic foundation of quantum mechanics, and rediscovered later by Seely [21]
who used them to solve problems in Linear Statistical Inference, calling them quadratic 
vector spaces.

A CJAS is a linear space constituted by symmetric matrices that commute containing 
the squares of its matrices. Seely [22] showed that every CJAS, A, has an unique basis, 
the principal basis, pb(A), constituted by POOPM.

Let A be a CJAS, of n ×n matrices, with principal basis pb(A) = Q = {Q1, . . . , Qm}. 
Given M ∈ A, we have

M =
m∑

j=1
bjQj =

∑
j∈C(M)

bjQj

with C(M) = {j : bj �= 0}, j = 1, . . . , m.
The orthogonal projection matrices, OPM, belonging to a CJAS, A, are sums of 

matrices of pb(A). Since {Q1, . . . , Qm} = pb(A) has m matrices, the CJAS A, as a 
linear subspace, has dimension dim(A) ⊆ m. Thus, considering the 0n×n matrices as an 
OPM on {0n}, there can be 2n OPM in A, as much as the distinct sums of matrices of 
pb(A), once each of the sums corresponds to a sub-set of m = {1, . . . , m}. Given C ⊆ m

and Q(C) =
∑

j∈C Qj , we will have rank(Q(C)) =
∑

j∈C gj , where gj = rank Qj , 
j = 1, . . . , m.

We also see that if, with Q ∈ A, we have rank(Q) = 1 then we must have Q ∈ pb(A). 
Namely, with Jn = 1n1T

n , if Q = 1
n Jn ∈ A we put Q1 = Q and say that A is a regular 

CJAS.
If the CJAS A is complete, this is, when A contains invertible matrices, we must have ∑m
j=1 Qj = In, so 

∑m
j=1 gj = n, thus the matrices in the principal basis of a complete 

CJAS add up to In.
Given M =

∑m
j=1 bjQj , with bj �= 0, the bj , j = 1, . . . , m, will be the eigenvalues of 

M with multiplicities gj , j = 1, . . . , m, so the determinant of matrix M will be

det(M) =
m∏

b
gj

j

j=1
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and

M−1 =
m∑

j=1
b−1

j Qj

whenever M is invertible.
Given the family M = {M1, . . . , Mw}, of matrices of A, we will have

M i =
m∑

j=1
bi,jQj , i = 1, . . . , w

and B = [bi,j ] will be the transition matrix between M and Q, M\Q. The matrices 
in M are linearly independent when and only when the row vectors of B are linearly 
independent, and rank(A) = m. If w = m and the matrices M1, . . . , Mm are linearly 
independent, the m row vectors of B will be linearly independent, thus B will be m ×m

and rank(B) = m.
Having M i =

∑m
j=1 bi,jQj , i = 1, . . . , m, with M i = [mi,l,h] and Qj = [qj,l,h] we have, 

for every pair (l, h), mi,l,h =
∑m

j=1 bi,jqj,l,h, i = 1, . . . , m, l = 1, . . . , n, h = 1, . . . , n, this 
is, with ṁ(l, h)[q̇(l, h)] the vector with components m1,l,h, . . . , mm,l,h[q1,l,h, . . . , qm,l,h], 
ṁ(l, h) = Bq̇(l, h), l = 1, . . . , n, h = 1, . . . , n.

Since B is invertible so is BT and we have

q̇(l, h) =
(
BT

)−1
ṁ(l, h), l = 1, . . . , n, h = 1, . . . , n,

so, with B−1 = [bj,i], we have

qj,l,h =
m∑

i=1
bj,imi,l,h, l = 1, . . . , n, h = 1, . . . , n, j = 1, . . . , m

which is the same as

Qj =
m∑

i=1
bj,iM i,

j = 1, . . . , m and M will be a basis for A.
Now, the matrices of M = {M1, . . . , Mm} commute, see Schott (1997) [20], if and 

only if they are diagonalised by the same orthogonal matrix, P 0. We then have M ⊂
V (P 0), with V (P 0) the family of matrices diagonalised by P 0. Since V (P 0) is a CJAS 
we see that a family of n × n symmetric matrices is contained in a CJAS if and only 
if they commute. Since the intersection of CJAS gives CJAS there will be a minimum 
CJAS containing M , whose matrices commute, this will be the CJAS A(M) generated 
by M .
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Namely if D is a family of POOPM, A(D) will have D as principal basis since the 
CJAS D must contain the CJAS constituted by the linear combinations of the matrices.

If the M1, . . . , Mw commute and are diagonalised by the orthogonal matrix P 0 the 
row vectors α1, . . . αn of P 0 will be eigenvectors for the matrices of M .

3. Models with commutative orthogonal block structure

The mixed model

y =
w∑

i=0
Xiβi

where β0 is fixed and β1, . . . , βw are independent random vectors with null mean vectors 
and variance–covariance matrices σ2

1Ic1 . . . σ2
wIcw

, where ci = rank(Xi), i = 1, . . . , k, 
will have mean vector μ = X0β0 and variance–covariance matrix V =

∑w
i=1 σ2

i M i, 
where M i = XiX

T
i , i = 1, . . . , w.

When the matrices of M0 = {M1 . . . Mw} commute, they will generate a CJAS, A0, 
with principal basis Q0 = {Q0

1, . . . , Q0
m0}.

If the Rn is the range space of [X1, . . . , Xw], the n × n matrix M i = [X1, . . . ,

Xw][X1, . . . , Xw]T will belong to A0 and, having rank n, will be invertible so A0 will 
be complete.

The space, Ω, spanned by μ will be R(X0) so, the orthogonal projection matrix on 
Ω will be

T = X0
(
XT

0 X0
)†

XT
0 = X0X†

0,

where † indicates Moore–Penrose inverse.
Now we will have

M i =
m0∑
j=1

b0
i,jQ0

j , i = 1, . . . , w,

and so

V =
w∑

i=1
σ2

i M i =
w∑

i=1
σ2

i

m0∑
j=1

b0
i,jQ0

j

=
m0∑
j=1

(
w∑

i=1
b0

i,jσ2
i

)
Q0

j =
m0∑
j=1

γ0
j Q0

j

with
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γ0
j =

w∑
i=1

b0
i,jσ2

i , j = 1, . . . , m0.

When M0 = {M1 . . . Mw} is a basis for A0 we have w = m0 and the transition matrix 
B0 = [b0

i,j ] is an m0 × m0 invertible matrix. Then the variance–covariance matrices of 
the mixed model will be all positive semi-definite linear combinations of the matrices 
Q0

1, . . . , Q0
m0 and the model will have OBS.

Let us now assume that T commutes with the matrices M1, . . . , Mw, then the ma-
trices of M∗ = {T , M1 . . . Mw} will generate a CJAS that contains A0, thus containing 
T and the Q0

1, . . . , Q0
m0 , so T Q0

j = Q0
jT , j = 1, . . . , m0, and the model will have COBS.

We point out that the principal basis of a CJAS A is constituted by the nonnull
matrices Q0

jT and Q0
jT C , with T C = In − T [15].

Let z0 ≥ 0 be the number of matrices of Q0 such that Q0
j T = Q0

j and z − z0 ≥ 0 be 
the number of matrices of Q0 such that Q0

j T �= 0n×n and Q0
j T �= Q0

j . We can always 
order the matrices in Q0 and Q to have

⎧⎪⎨
⎪⎩

Qj = Q0
j , j = 1, . . . , z0 (

if z0 > 0
)

Qj = Q0
jT , j = z0 + 1, . . . , z

Qj = Q0
j−z+z0T C , j = z + 1, . . . , m

Then we will have T =
∑z

j=1 Qj and m0 = m − z + z0 as well as

⎧⎪⎨
⎪⎩

Q0
j = Qj , j = 1, . . . , z0 (

if z0 > 0
)

Q0
j = Qj + Qj+z−z0 , j = z0 + 1, . . . , z

Q0
j = Qj+z−z0 , j = z + 1, . . . , m0

Since

V =
m0∑
j=1

γ0
j Q0

j =
m∑

l=1

γlQl,

we get
⎧⎪⎨
⎪⎩

γ0
j = γj , j = 1, . . . , z0 (

if z0 > 0
)

γ0
j = γj = γj+z−z0 , j = z0 + 1, . . . , z

γ0
j = γj+z−z0 , j = z + 1, . . . , m0

Likewise, from M i =
∑m0

j=1 b0
i,jQ0

j =
∑m

j=1 bi,jQj we get

⎧⎪⎨
⎪⎩

b0
i,j = bi,j , j = 1, . . . , z0, i = 1 . . . , w,

(
if z0 > 0

)
b0

i,j = bi,j = bi,j+z−z0 , j = z0 + 1, . . . , z, i = 1 . . . , w

b0 = b 0 , j = z + 1, . . . , m0, i = 1 . . . , w.
i,j i,j+z−z
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Thus B0 = [b0
i,j ] is sub matrix of B = [bi,j ], since every column of B0 is column 

of B. Moreover the column of B with indexes j and j + z, j = z0 + 1, . . . , z, will be 
identical, and every column of B is equal to a column of B0 so R(B0) = R(B) and 
rank(B0) = rank(B).

With T =
∑z

j=1 Qj , let us put

γ1 =

⎡
⎢⎣

γ1
...

γz

⎤
⎥⎦ ,

γ2 =

⎡
⎢⎣

γz+1
...

γm

⎤
⎥⎦ ,

σ2 =

⎡
⎢⎣

σ2
1
...

σ2
m

⎤
⎥⎦

then, with the partition B = [B1 B2] where B1 has z columns, we have the vectors of 
canonical variance components

γl = BT
l σ2, l = 1, 2.

When B2 is horizontally free the column vectors of BT
2 are linearly independent and 

we obtain, see e.g. [14], σ2 = (BT
2 )†γ2 and γ1 = BT

1 (BT
2 )†γ2 so that we may estimate 

σ2 and γ1 through γ2. Then the relevant parameters for the random effects part of the 
model, γ2 and σ2, determine each other. Thus the random effects part of the model 
segregates as a sub-model and we say that there is segregation.

If z0 = 0 the columns of B1 are identical to the first z columns of B2, and the 
corresponding components of γ1 and γ2 are identical. We then say that there is matching.

We can also define z0 as the number of matrices in Q that belong to Q0, so this 
number will not depend on the ordering of the matrices on the two basis. As we shall 
see this possibility will be useful later on.

Let the row vectors of Aj constitute an orthogonal basis for R(Qj) and put X0,j =
AjX0, = 1, . . . , m, as well as μj = Ajμ, j = 1, . . . , m. Now we have Qj = AT

j Aj , 
j = 1, . . . , m and

μ =
m∑

j=1
Qjμ =

m∑
j=1

AT
j Ajμ =

m∑
j=1

AT
j μj

and so, whatever the l × n matrix U , the estimable vector

Ψ = Uμ
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may be written as

Ψ =
m∑

j=1
U jμj ,

with U j = UAT
j , j = 1, . . . , m.

The subvectors Y j have mean vectors μj and variance–covariance matrices

V j = Aj

(
m∑

j=1
γjQj

)
AT

j = γjIgj
,

with gj = rank(Qj), j = 1, . . . , m.

4. Models joining

Joining the mixed models

y(l) =
w(l)∑
i=0

Xi(l)βi(l), l = 1, . . . , h,

where β0(l), l = 1, . . . , h, were fixed and the β1(l), . . . , βw(l), l = 1, . . . , h, had null 
mean vectors, null cross covariance matrices and variance–covariance matrices σ2(l)Ici(l), 
where ci(l) = rank(Xi(l)), i = 1, . . . , w(l), l = 1, . . . , h, we get the model

y =
w∑

i=0
Xiβi,

where, with D(X0(1) . . . X0(h)) indicating a blockwise diagonal matrix with principal 
blocks X0(1) . . . X0(h),

{
X0 = D(X0(1) . . . X0(h))
β0 = [β0(1)T . . . β0(h)T]T.

Moreover putting w(0) = 0 and w(l) =
∑l

k=1 w(k), l = 1, . . . , h, we also take, when 
w(l − 1) < i ≤ w(l), l = 1, . . . , h,

{
Xi = D(0n1×nl

· · · Xi−w(l−1)(l) · · · 0nh×nl
)

βi = D(0n1×nl
· · · βi−w(l−1)(l) · · · 0nh×nl

)

thus

M i = XiX
T
i = D

(
0n(1)×n(1) . . . M i−w(l−1)(l) . . . 0n(h)×n(h)

)
.
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Let us now assume that the initial models are COBS. The principal basis for the CJA, 
A0(l) and A(l), l = 1, . . . , h, associated to them would be

Q0(l) =
{

Q0
1(l), . . . , Q0

m0(l)(l)
}

, l = 1, . . . , h,

with w0(l) = m0(l), and

Q(l) =
{

Q1(l), . . . , Qm(l)(l)
}

, l = 1, . . . , h.

Moreover we have the transition matrices B0(l) and B(l) = [B1(l) | B2(l)], l = 1, . . . , h.
Now, for the models obtained joining the initial ones, we have the CJA given, see [6], 

by the Cartesian products Xh
l=1A0(l) and Xh

l=1A(l).
With Q∗(l) = {Q∗

1(l), . . . , Q∗
m∗(l)(l)}, l = 1, . . . , h, the principal basis of A∗(l), the 

principal basis of Xh
l=1A∗(l) will be all the blockwise diagonal matrices with all the 

principal blocks null but one which will belong to one of the Q∗(l), l = 1, . . . , h.
Taking m0(0) = 0 and m0(l) =

∑l
j=1 m0(j), the matrices in the principal basis of 

Xh
l=1A0(l) will be

Q0
i = D

(
0n1×n1 . . . Q0

i−m0(l−1)(l) . . . 0nh×nh

)
, m0(l − 1) < i ≤ m0(l), l = 1, . . . , h,

so we have the transition matrix

B0 = D
(
B0(1), . . . , B0(h)

)
.

Going over to Xh
l=1A(l), to have the transition matrix

B = [B1 | B2]

with

Bi = D
(
Bi(1), . . . , Bi(h)

)
, i = 1, 2

we take v(l) = m(l) − z(l), l = 1, . . . , h, v(0) = 0 and v(l) =
∑l

j=1 v(l), l = 1, . . . , h, as 
well as z(0) = 0 and z(l) =

∑l
j=1 z(l), l = 1, . . . , h, to write

Qi = D
(
0n1×n1 . . . Qi−z(l−1)(l) . . . 0nh×nh

)
, z(l − 1) < i ≤ z(l), l = 1, . . . , h

and, with z = z(h),

Qi = D
(
0n1×n1 . . . Qi−z−v(l−1)(l) . . . 0nh×nh

)
,

z + v(l − 1) < i ≤ z + v(l), l = 1, . . . , h.

We now establish
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Proposition 1. Joining models with commutative orthogonal block structure gives models 
with commutative orthogonal block structure.

Proof. Since X†
0 = D(X†

0(1) . . . X†
0(h)), the orthogonal projection matrix T on R(X0)

will be

T = X0X†
0 = D

(
X0(1)X†

0(1) . . . X0(h)X†
0(h)

)
= D

(
T (1) . . . T (h)

)
,

which commutes with the Q0
i , i = 1, . . . , m0, with m0 =

∑h
l=1 m0(l). So the thesis is 

established. �
We also have the

Proposition 2. Joining models with commutative orthogonal block structure with matching 
[segregation] gives models with commutative orthogonal block structure with matching 
[segregation].

Proof. With z0(l), l = 1, . . . , h, [z0] the number of matrices that belong to both principal 
basis of A0(l) and A(l), l = 1, . . . , h, [Xh

l=1A0(l) and Xh
l=1A(l)] we have z0 =

∑h
l=1 z0(l), 

so z0 = 0, and there is matching for the joint model if and only if z0(1) = · · · = z0(h) = 0
and there is matching for all the initial ones.

Moreover the row vectors of B2 = D(B2(1), . . . , B2(h)) are linearly independent, and 
there is segregation for the joint model if and only if the B2(l), l = 1, . . . , h, have linearly 
independent row vectors and there is segregation for all initial models. The proof is now 
complete. �
5. Final remarks

In order to analyse together models obtained independently, we can build up complex 
models from simple ones. For this purpose, two operations, models crossing and models 
nesting, were introduced, see [15]. These operations were based on the Kronecker product 
of CJA and the restricted Kronecker product of CJA, see [8].

In this paper we consider another operation, models joining, which, as we saw, is 
associated to the Cartesian product of Jordan Algebras, introduced in [6]. The relation 
between building of complex models from simple ones and operations on CJA is thus, 
once again, stressed.
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