INSTITUTO POLITÉCNICO DE BEJA ESCOLA SUPERIOR AGRÁRIA

MESTRADO EM ENGENHARIA DO AMBIENTE

TRATAMENTO DE ÁGUAS RESIDUAIS URBANAS COM RECURSO A PROCESSOS EM SÉRIE DE PRECIPITAÇÃO QUIMICA E NEUTRALIZAÇÃO NATURAL

Ana Lúcia Rodrigues Miguel

Orientadora:

Doutora Maria de Fátima Nunes de Carvalho

INSTITUTO POLITÉCNICO DE BEJA ESCOLA SUPERIOR AGRÁRIA

MESTRADO EM ENGENHARIA DO AMBIENTE

TRATAMENTO DE ÁGUAS RESIDUAIS URBANAS COM RECURSO A PROCESSOS EM SÉRIE DE PRECIPITAÇÃO QUIMICA E NEUTRALIZAÇÃO NATURAL

Ana Lúcia Rodrigues Miguel

Orientadora:

Doutora Maria de Fátima Nunes de Carvalho

Dissertação apresentada no âmbito do trabalho de estágio, para obtenção do Grau de Mestre.

BEJA, 2012

ÍNDICE GERAL

LISTA DE S	SIGLAS E/OU ABREVIATURAS	8
DEDICATÓ	DRIA	9
AGRADEC	IMENTOS	10
RESUMO		11
ABSTRACT		12
1. ENQUA	ADRAMENTO DO TEMA E OBJETIVOS	13
2. INTRO	DUÇÃO	15
2.1. Ág	uas residuais – Aspetos gerais	15
2.2. Pro	odução Mundial de água Residual Urbana	15
2.3. Ca	raterização físico - química da água residual doméstica	17
2.3.1.	Matéria sólida	17
2.3.2.	Temperatura	17
2.3.3.	Cheiro	17
2.3.4.	Cor	17
2.3.5.	PH	18
2.3.6.	Microrganismos	18
2.3.7.	Matéria orgânica	18
2.3.8.	Nutrientes inorgânicos	19
2.4. Tra	ntamentos Biológicos das Águas Residuais Domésticas	20
2.4.1.	Lamas ativadas	20
2.4.2.	Leitos percoladores	22
2.4.3.	Lagunagem	22
2.4.4.	Fossas séticas	
2.4.4.1.	Aspetos gerais	24
2.4.4.2.	Processos químicos e biológicos	24
2.4.5.	Leitos de macrófitas	25
2.4.5.1.	Descrição sumária	26
2.4.6. I	Digestão Anaeróbia	28
2.5. Tra	atamentos Físico – Químicos das águas residuais domésticas	28
2.5.1.	Correção do pH	29
2.5.2	Precipitação química	29

	2.5.3.	Adsorção	30
	2.5.4.	Desinfeção	30
2	2.6. No	rmas legais de descarga de águas residuais domésticas	31
2	2.7. Rei	ıtilização de águas residuais tratadas	33
	2.7.1.	Principais aplicações das águas residuais tratadas	33
	2.7.1.1.	Agricultura	33
	2.7.1.2.	Rega de espaços verdes	34
	2.7.1.3.	Indústria	35
	2.7.1.4.	Recarga de aquíferos	36
	2.7.1.5.	Utilizações recreativas e ambientais	36
	2.7.1.6.	Utilizações urbanas não-potáveis	37
3.	Materia	is e Métodos	38
3	3.1. Ori	gem e recolha da água residual	38
3	3.2. Inst	talações e Procedimento Experimental	39
	3.2.1.En	saios de precipitação química básica com Ca(OH) ₂	39
3	3.3. Pro	cedimentos analíticos	41
	3.3.1. p	Н	41
	3.3.2. C	Condutividade	41
	3.3.3. A	Absorvância	42
	3.3.4.	Carência Química de Oxigénio (CQO)	42
	3.3.5.	Carência Bioquímica de Oxigénio (CBO)	42
	3.3.6.	Oxigénio Dissolvido	43
	3.3.7. A	Azoto Amoniacal	43
	3.3.8. A	Azoto Kjeldhal	43
	3.3.9. F	ósforo Total	44
	3.3.10.	Cálcio	44
	3.3.11.	Cálcio e Magnésio	44
	3.3.12.	Sólidos Suspensos Totais (SST)	44
	3.3.13.	Alcalinidade	45
	3.3.15.	Ferro, Manganês e Cádmio.	45
	3.3.16.	Sódio e Potássio	45
	3.3.17.	Coliformes Totais	45
4.	RESUL	ΓADOS E DISCUSSÃO	46

4.1. Caraterização da água residual	46
4.2. Estudo do tratamento das águas residuais por aplicação de precip química básica com Ca(OH) ₂	_
4.2.1. Estudo do pH de precipitação	48
4.2.1.1. Estudo da quantidade de reagente	48
4.2.1.2. Estudo do efeito do pH de reação na condutividade elétrica (CE)	49
4.2.1.3. Estudo do efeito do pH na Absorvância a 410 nm	49
4.2.1.4. Estudo do efeito do pH na Absorvância a 254 nm	50
4.2.1.5. CQO	51
4.2.1.6. Escolha do pH de trabalho	51
4.3. Estudo da neutralização natural da água pré – tratada por precipitação q com Ca(OH) ₂	
4.3.1. Estudo da neutralização natural do efluente ao longo do tempo	53
4.3.2. Estudo da variação da Condutividade ao longo do tempo	56
4.4. Decantação de lamas após a adição de solução de Ca(OH) ₂ às amos água residual	
4.6. Avaliação da possibilidade de Reutilização das águas residuais tr 64	atadas
4.6.2. Recarga de aquíferos	67
4.6.3. Utilizações recreativas e ambientais	68
4.6.4. Utilizações urbanas não-potáveis	69
5. CONSIDERAÇÕS FINAIS	71
BIBLIOGRAFIA	73

ÍNDICE DE TABELAS

ÍNDICE DE FIGURAS

Figura 1 - Esquemas de tratamento com pré-tratamento por sedimentação seguido de um tanque provido
de arejamento e por fim um sedimentador secundário (adaptado de Metcalf e Eddy, 2003)21
Figura 2 - Esquema de sistema de tratamento com leito percolador (Fonte – Santo, 2008)
Figura 3 – Lagoas de estabilização (Fonte – http://www.google.pt/imagens - lagoa de estabilização) 23
Figura 4 – Leito de macrófitas (Fonte – http://www.google.pt/imagens - leito de macrofitas) 28
Figura 5 – Aspeto físico da água residual durantes os ensaios; a) 1ª etapa – antes da adição da cal; b) Após
transferência da água para as provetas – Inicio da decantação de lamas; c) Decantação de lamas; d) Fase
final da decantação de lamas
Figura 6 – Esquema de ensaio instalado no Laboratório
Figura 7 - Volume de solução de cal (ml) 200g/L, adicionada à AR (bruta e tratada) para atingir o pH
pretendido
Figura 8 - Resultados da condutividade ($\mu s/cm$) em função dos valores de pH das águas em estudo 49
Figura 9 - Estudo da remoção da Abs 410 nm em função pH
Figura 10 - Estudo da remoção da Abs 254 nm em função pH
Figura 11 – Estudo da remoção de CQO em função do pH
Figura 12 - Evolução do pH, da Alcalinidade Total e do Cálcio ao longo do tempo (Processo de
Neutralização natural)
Figura 13 - Alcalinidade à Fenolftaleína Vs Alcalinidade ao Alaranjado de Metilo
Figura 14 – Evolução da Condutividade ao longo do tempo
Figura 15 – Processo de sedimentação de lamas
Figura 16 - Resultado da decantação de lamas para os 3 ensaios realizados às águas residuais e
Velocidade de decantação de lamas (média de todos os valores obtidos)
Figura 17 – Representação gráfica utilizada para o cálculo da velocidade de decantação das lamas, a partir
da média obtida de todos os ensaios realizados (segundo o Método de Talmadge e Fitch)
Figura 18 – Tanque de mistura (www.hidrosul.com.br)

LISTA DE SIGLAS E/OU ABREVIATURAS

Abs - Absorvância

AR – Águas Residuais

Ca²⁺ - Cálcio

ETAR – Estação de Tratamento de Águas Residuais

N Total – Azoto Total

PQ - Precipitação Química

P Total – Fósforo Total

SAR - Sodium Adsorption Ratio

SDT – Sólidos Dissolvidos Totais

SST – Sólidos Suspensos Totais

USEPA - United States Environmental Protection Agency

VLE - Valor limite de emissão

VMA – Valor Máximo Admissível

VMR - Valor Máximo Recomendado

VP – Valor Paramétrico

DEDICATÓRIA

Dedico este trabalho especialmente à minha família, ao meu companheiro e aos meus amigos por todo o apoio e acompanhamento que me deram durante a realização deste trabalho.

AGRADECIMENTOS

Quero agradecer à Doutora Maria de Fátima Carvalho pela confiança e iniciativa de me sugerir a realização deste trabalho. Pelo grande apoio, incentivo, iniciativa e espirito de equipa que sempre me deu ao longo deste trabalho.

A todo o pessoal do Laboratório de Águas da Escola Superior Agrária de Beja, pelo apoio e disponibilidade prestados durante a realização de ensaios no laboratório, com especial agradecimento à Dona Ivone pela ajuda e cooperação na realização dos ensaios.

À Escola Superior Agrária de Beja pela disponibilização dos meios e equipamentos com os quais tive a possibilidade de realizar o meu trabalho.

À Luságua – Serviços Ambientais S.A., empresa onde desenvolvo a minha atividade profissional.

Aos meus colegas de trabalho especialmente ao Ricardo Afonso e à Patrícia Cavaco, que me apoiaram e me substituíram durante as minhas ausências para realização deste trabalho.

Aos meus pais José Fernando Miguel e Deolinda Miguel pelo apoio e carinho incondicionais que sempre deram durante esta etapa e durante toda a minha vida.

À minha irmã Inês Miguel pela compreensão e amizade.

Ao meu companheiro Ricardo Afonso pelo amor, carinho, compreensão e amizade durante o decorrer deste trabalho.

À minha melhor amiga Patrícia Cavaco pela amizade e apoio em todos os campos da minha vida.

À minha família que sempre me deu apoio em tudo o que sempre precisei ao longo da minha vida e me ajudou a chegar a este ponto.

E ao meu grupo de amigos e amigas que nos momentos em que sempre preciso me tÊm apoiado.

RESUMO

A precipitação química básica (PQ) aplicada a águas residuais domésticas, apresentou

melhores eficiências de remoção a pH= 11,5, com um gasto médio de reagentes de 2

g/L. A neutralização do efluente obtido é possível ser realizada de forma natural, em

contato direto com o CO₂ da atmosfera em aproximadamente 15 dias.

A PQ mostrou ser eficiente quase em 100% na remoção de Fósforo, Sólidos Suspensos

Totais, bem como de Coliformes totais. O Ferro, Manganês e Cádmio também foram

removidos a valores residuais. Já a remoção de matéria orgânica não apresentou valores

tão significativos, pois as remoções médias de CQO e CBO₅ apresentaram valores de

70% e 85% respetivamente. Verificou-se que algumas das amostras ainda apresentavam

valores de biodegradabilidade (CBO₅/CQO ≈ 0,5) deixando em aberto a sua

possibilidade de afinação por processos biológicos.

O estudo de viabilidade de reutilização destas águas tratadas por PQ, mostrou que as

mesmas podem ser reutilizadas para vários fins, nomeadamente rega, recarga de

aquíferos, usos recreativos e ambientais e usos urbanos não potáveis.

Palavras – chave: Precipitação Química, eficiência de remoção, reutilização.

ABSTRACT

The basic chemical precipitation (CP) applied to domestic waste water presented the

best removal efficiencies at pH = 11.5, with an average spending of 2 g/L reagent. The

neutralization of the effluent can be naturally obtained in about 15 days of direct contact

with the existing CO_2 in the atmosphere.

The CP has demonstrated almost 100% efficiency in the removal of phosphorus, total

suspended solids and total coliforms. Iron, manganese and Cadmium were also removed

to residual values. The rate of organic matter removal did not present such significant

values because the average rate of removal of COD and Bod5 was of 70% and 85%

respectively. Some of the samples still showed values of biodegradability (Bod₅/COD ≈

0.5) opening the possibility of tuning by biological processes.

The feasibility study of the reuse of treated water by CP showed that these waters can in

fact be reused for several purposes, including irrigation, aquifer recharge, environmental

and recreational uses as well as other non-potable urban uses.

Key words: Chemical Precipitation; Removal Efficiency; Reuse.

1. ENQUADRAMENTO DO TEMA E OBJETIVOS

Todas as comunidades produzem tanto resíduos sólidos, líquidos como emissões de gases. O resíduo líquido, a denominada água residual, consiste em grande parte na provisão de água da comunidade após a sua utilização em qualquer tipo de aplicação, eventualmente em conjunto com água proveniente de origens naturais. Desta forma, pode-se definir água residual como a combinação dos resíduos líquidos retirados das habitações, instituições, estabelecimentos comerciais e indústria podendo também estar associados com água subterrânea, superficial ou pluvial (Metcalf e Eddy, 2003).

É da maior importância que a água residual seja drenada e tratada devido a várias razões, designadamente as seguintes:

- A decomposição de matéria orgânica presente em água residual provoca cheiros muito desagradáveis;
- A água residual sem tratamento possui microrganismos patogénicos que fazem parte da flora intestinal humana, podendo originar problemas na saúde pública;
- Os nutrientes que existem na água residual podem estimular o crescimento de plantas aquáticas e podem conter compostos que são tóxicos, mutagénicos ou carcinogénicos;
- A matéria orgânica presente em água residual conduz a carência de oxigénio no meio recetor.

Por todas estas razões é muito importante que a água residual seja removida com rapidez dos locais onde é produzida e seja transportada até uma zona de tratamento, sendo posteriormente reutilizada ou descarregada num meio recetor, para que a saúde pública e o ambiente sejam protegidos (Metcalf & Eddy, 2003).

Se bem que nos últimos anos, se tenha verificado um aumento do interesse pelos tratamentos químicos de águas residuais, o seu uso é muito mais restrito do que o das operações físicas e dos processos biológicos. No entanto, os processos químicos são bastante úteis, quer nos tratamentos prévios a que é necessário submeter os efluentes industriais antes da sua entrada nas redes de coletores e nas estações de tratamento de águas residuais domésticas, quer no tratamento conjunto de águas residuais domésticas e industriais, quer ainda como tratamentos terciários ou de afinação de águas residuais urbanas.

Embora seja possível efetuar o tratamento completo de águas residuais apenas por processos químicos e apesar de tal tratamento determinar, relativamente a certos parâmetros, eficiência de remoção superior à obtida pelos tratamentos biológicos (por exemplo, o CQO), a utilização dos processos químicos continua a ser reduzido. Em Portugal, o emprego dos tratamentos químicos é ainda menor do que noutros países, pois nem sequer a desinfeção dos efluentes tratados é ainda realizada (Pita, 2002).

Atendendo à escassez de estudos de precipitação química aplicada a água residual doméstica, o presente trabalho diz respeito ao estudo da aplicação do processo de precipitação química básica com Ca(OH)₂ à água residual urbana de pequenos aglomerado da Região Alentejo, de modo a verificar a sua eficácia na obtenção de água residual tratada com características capazes de cumprir a legislação de descarga em vigor ou a sua reutilização para vários fins.

2. INTRODUÇÃO

2.1. ÁGUAS RESIDUAIS – ASPETOS GERAIS

Existem vários tipos de águas residuais, sendo que a distinção entre os mesmos está relacionada com a sua origem. As águas residuais domésticas provêm geralmente de instalações sanitárias, cozinhas e também de lavagens de roupa, caracterizando-se por conterem quantidades significativas de matéria orgânica e facilmente se biodegradarem. No caso das águas residuais industriais, que como o nome indica provêm da indústria, são caracterizadas pela grande variedade de compostos que podem possuir, consoante o tipo de processamento industrial, bem como pela modificação sofrida pelos mesmos com o decorrer do tempo.

As águas residuais pluviais resultam do escoamento superficial originado pela precipitação e normalmente contêm uma carga poluente inferior à das outras águas residuais, principalmente a nível de matéria orgânica. A massa líquida que é recolhida por sarjetas e sumidouros, provenientes de regas de espaços verdes e da lavagem de arruamentos, entre outros, são equiparadas a águas pluviais (Matos, 2006).

Também pode existir água nos sistemas de drenagem que não é diretamente proveniente das três origens explicitadas acima, que aflui aos coletores por diversos modos de infiltração (Metcalf e Eddy, 2003).

Os caudais de água residual podem-se obter por extrapolação a partir de registos que eventualmente existam, da população em questão ou de comunidades semelhantes, ou mesmo através da sua medição direta. Também se pode recorrer a registos de consumo de água no sentido de se estimar os caudais de água residual derivados desse consumo (Butler *et al*, 1995). A nível de exemplo, nos Estados Unidos da América, entre 60 a 90 % da água consumida por pessoa torna-se água residual (Metcalf e Eddy, 2003).

2.2. PRODUÇÃO MUNDIAL DE ÁGUA RESIDUAL URBANA

A capitação de água residual representa a quantidade de água residual produzida por uma pessoa num dado período de tempo (geralmente um dia), variando com os hábitos das populações, podendo desse modo ser diferente entre países ou comunidades. Na Tabela 1 podem-se observar exemplos de capitações de água residual doméstica para diferentes locais, alguns do mesmo país.

Tabela 1 – Capitações de água residual urbana (Santo, 2008).

País	Capitação [l/(hab.dia)]	Referências		
Malta	95	Gatt, 1993 in Butler et al, 1995.		
Reino Unido	101	Butler, 1991, 1993 in Butler et al, 1995.		
Reino Unido	117	Hall <i>et al</i> , 1988 in Butler <i>et al</i> , 1995.		
Estados Unidos da América	133	Siegrist et al, 1976 in Butler et al, 1995.		
Estados Unidos da América	156	Laak, 1974 in Buttler <i>et al</i> , 1995.		
Estados Unidos da América	180	Ligman et al, 1974 in Butler et al, 1995.		

Pode-se observar que é nos Estados Unidos que os habitantes na generalidade produzem mais água residual doméstica, enquanto que em Malta se verifica a produção por habitante mais baixa.

As capitações para cada região hidrográfica de Portugal encontram-se na Tabela 2.

Tabela 2 – Capitações de água residual em 2006 para as regiões hidrográficas de Portugal Continental e Ilhas (INSAAR, 2008).

Região Hidrográfica	Capitação [l/(hab.dia)]		
Minho e Lima	117		
Cávado, Ave e Leça	107		
Douro	115		
Vouga, Mondego, Lis e Ribeiras do Oeste	125		
Tejo	127		
Sado e Mira	139		
Guadiana	129		
Ribeiras do Algarve	238		
Açores	126		
Madeira	180		
Continente	126		

A capitação mais elevada verifica-se no Algarve, sendo consequência da atividade turística característica da região (INSAAR, 2008).

As principais fontes de água residual urbana numa determinada povoação são as residências e o comércio, ainda que as instalações recreativas e institucionais também sejam origens relevantes (Metcalf e Eddy, 2003).

2.3. CARATERIZAÇÃO FÍSICO - QUÍMICA DA ÁGUA RESIDUAL DOMÉSTICA

2.3.1. MATÉRIA SÓLIDA

O critério mais simples de medição da carga poluente de uma água residual é a quantidade de matéria sólida que ela contém (sólidos totais), que é constituída pelo resíduo obtido após evaporação da água residual, expresso em mg/l.

Este conteúdo sólido inclui os sólidos dissolvidos e os sólidos não dissolvidos na água residual. São estes últimos que, embora de modo rudimentar, mais rapidamente nos podem servir de indicador relativamente à carga poluente da água residual, sendo designados por sólidos em suspensão ou sólidos suspensos (peso em mg/l de matéria sólida retida quando a água residual é filtrada). Este valor varia de água residual para água residual, podendo considerar-se fraca uma água residual com 300 mg/l de sólidos suspensos, enquanto uma concentração de 700 mg/l já corresponde a uma carga poluente bastante elevada.

Cerca de 2/3 dos sólidos suspensos são de natureza orgânica, sólidos voláteis suspensos (SVS), os restantes são sólidos minerais.

2.3.2. TEMPERATURA

A temperatura da água residual doméstica é em geral um pouco superior à temperatura ambiente. O aumento da temperatura facilita a sedimentação.

2.3.3. CHEIRO

A água residual fresca tem um cheiro característico a "mofo". A água residual envelhecida (esgoto séptico) tem um cheiro insuportável a "ovos podres".

2.3.4. COR

Na água residual doméstica a cor é em geral devida aos sólidos suspensos e dissolvidos. A água residual fresca apresenta cor acinzentada enquanto a cor preta é indicativa de uma água residual envelhecida.

O aparecimento de outras cores pode ser causado por descargas de águas residuais industriais na rede doméstica.

2.3.5. PH

A determinação do pH duma água residual permite verificar se essa água é ácida, alcalina ou neutra. A água residual doméstica normalmente apresenta um pH próximo de 7, zona neutra.

2.3.6. MICRORGANISMOS

Nas águas residuais domésticas há uma grande variedade de microrganismos, sobretudo bactérias. No seu tratamento, pelos processos geralmente usados, as bactérias aeróbias convertem a matéria orgânica, utilizando-a como alimento, em matéria inorgânica e em novas bactérias.

Existem determinadas substâncias que podem aparecer nas águas residuais domésticas (geralmente devido a descargas de águas residuais industriais na rede doméstica), que são tóxicas para os microrganismos, matando-os e impedindo em consequência o tratamento biológico dessas águas residuais, permanecendo nelas a matéria orgânica inalterada sem que desapareça portanto a carga poluente a ela devida.

2.3.7. MATÉRIA ORGÂNICA

A concentração de matéria orgânica nas águas naturais tem sido reconhecida, desde há muito tempo, como o principal critério de qualidade. Os esgotos domésticos, alguns tipos de águas residuais industriais e águas de drenagem que arrastam, por exemplo, vegetação em apodrecimento, constituem fontes apreciáveis de matéria orgânica. A quantidade de matéria orgânica pode ser avaliada através das determinações de carência bioquímica de oxigénio (CBO₅), carência química de oxigénio (CQO), carbono orgânico total (COT), etc.. A sua principal consequência reside na desoxigenação que provoca no meio recetor, alterando a fauna e a flora aí existentes.

Níveis elevados de matéria orgânica traduzem-se numa fonte de alimentação para bactérias, protozoários, fungos, etc. Nestas condições, a comunidade fica reduzida a um menor número de espécies, com grandes quantidades de organismos. O aparecimento

dos fungos dos esgotos torna-se desagradável. Níveis baixos de matéria orgânica estimulam a comunidade biológica, pois a decomposição das bactérias produz sais que fertilizam as algas que, por sua vez, servem de alimento a crustáceos, ninfas e larvas de insetos.

2.3.8. NUTRIENTES INORGÂNICOS

O azoto e o fósforo são os principais nutrientes inorgânicos necessários aos sistemas biológicos. A sua presença provoca um elevado nível de produtividade primária e, consequentemente, de outras formas de vida. Uma produção desequilibrada de microrganismos conduz à deterioração da qualidade da água, principalmente em termos de desenvolvimento e degradação de grandes massas de algas e da ocorrência de cheiro ou gosto desagradável. Este fenómeno é designado por eutrofização e pode tornar inaproveitável a água onde ocorre, podendo a longo prazo levar ao desaparecimento de lagos e albufeiras.

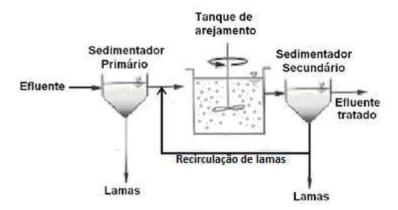
As aglomerações de algas podem ainda provocar grandes flutuações diurnas de oxigénio dissolvido e aumentar os sedimentos depositados nos leitos dos rios (Pita, 2002).

TABELA 3 – Composição típica de águas residuais não tratadas (Pita, 2002).

	Unidades	EUA		Portugal	
Poluente	mg/L	Intervalo de variação	Valor típico	Intervalo de variação	Valor típico
Sólidos Totais (ST)	mg/L	390 - 1230	720	980 - 60	715
Sólidos Dissolvidos Totais (SDT)	mg/L	270 - 860	500	210 - 720	550
Sólidos Dissolvidos Fixos (SDF)	mg/L	160 - 520	300	-	-
Sólidos Dissolvidos Voláteis (SDV)	mg/L	110 - 340	200	-	-
Sólidos em Suspensão Totais (SST)	mg/L	120 - 400	210	90 - 430	190
Sólidos em Suspensão Fixos (SSF)	mg/L	25 - 85	50	9 - 24	16
Sólidos em Suspensão Voláteis (SSV)	mg/L	95 - 315	160	34 - 109	72
Sólidos Sedimentáveis	mg/L	5 - 20	10	-	-
Carência Bioquímica de Oxigénio (CBO ₅ ²⁰)	mg/L O ₂	110 - 350	190	444 - 1338	290
Carência Química de Oxigénio (CQO)	mg/L O ₂	250 - 800	430	746 - 1946	608
Carbono Orgânico Total (COT)	mg/L	80 - 260	140	-	-
Azoto Total (N-tot)	mg/L N	20 - 70	40	53 - 88	60
Azoto Orgânico (N-org)	mg/L N	8 - 25	15	11,8 - 16,0	14
Azoto Amoniacal (N-NH₄)	mg/L NH4	12 - 45	25	32 - 81	38
Nitritos (N-NO ₂)	mg/L NO ₂	0 - vestígios	0	vestígios - 1,31	0,19
Nitratos (N-NO ₃)	mg/L NO ₃	0 - vestígios	0	vestígios - 3,3	0,5
Fósforo Total (P-tot)	mg/L P	4 - 12	7	3,5 - 13	8,5
Fósforo Orgânico (P-org)	mg/L P	1 - 4	2	-	_
Fósforo Inorgânico (P-ort)	mg/L P	3 - 10	5	-	9
Cloretos	mg/L	30 - 90	50	120 - 136	128
Sulfatos	mg/L	20 - 50	30	42 - 75	47
Óleos e gorduras	mg/L	50 - 100	90	39 - 475	115

2.4. TRATAMENTOS BIOLÓGICOS DAS ÁGUAS RESIDUAIS DOMÉSTICAS

2.4.1. LAMAS ATIVADAS


O tratamento de efluente por um sistema de lamas ativadas tira partido dos microrganismos presentes no mesmo que metabolizam a matéria orgânica. As lamas ativadas consistem numa massa de comunidades de microrganismos que após a sua maturação se encontram aptos ao consumo de matéria orgânica e eventualmente outros nutrientes presentes na água residual. Os principais objetivos de um tratamento por lamas ativadas são:

• Oxidação de matéria orgânica particulada e dissolvida;

- Captura e incorporação de sólidos coloidais não sedimentáveis e dissolvidos em flocos e biofilme;
- Transformação ou remoção de nutrientes como azoto e fósforo (em algumas variantes);
- Remoção de substâncias orgânicas específicas que sejam detetáveis (só para algumas situações).

Neste tipo de tratamento a conversão da matéria orgânica ou outros constituintes presentes na água residual em gases ou substâncias menos nocivas é efetuada por microrganismos que são mantidos em suspensão no líquido.

O esquema mais simples do processo de tratamento por lamas ativadas consiste num reator provido de arejamento, dentro do qual estão suspensos microrganismos responsáveis pelo tratamento, seguido de um decantador que promova a separação entre líquidos e sólidos (lamas) do efluente, terminando com a recirculação de uma fração dos sólidos separados na unidade anterior de novo para o reator inicial. É também frequente que o efluente a tratar antes de entrar no reator arejado tenha sofrido uma sedimentação primária (Metcalf e Eddy, 2003). Na Figura 1 está a representação do esquema de tratamento com lamas ativadas descrito atrás.

Figura 1 - Esquemas de tratamento com pré-tratamento por sedimentação seguido de um tanque provido de arejamento e por fim um sedimentador secundário (adaptado de Metcalf e Eddy, 2003).

Os esquemas de tratamento com lamas ativados são muito diversos e a sua configuração depende das necessidades de despoluição da água residual. O esquema mais frequentemente visto em Portugal no serviço a pequenos aglomerados é o mais simples, ou seja, um tanque de arejamento seguido de um decantador.

2.4.2. LEITOS PERCOLADORES

À semelhança das lamas ativadas, também nos leitos percoladores o tratamento do efluente é efetuado por microrganismos, contendo portanto os mesmos objetivos no tratamento.

Os microrganismos que efetuam o tratamento do efluente nos leitos percoladores pela conversão de matéria orgânica ou nutrientes estão presos a um material inerte que é o material de enchimento do leito. A remoção de poluentes da água residual dá-se durante a passagem desta através do leito percolador, entrando assim em contacto com a camada de microrganismos que cobre o material de enchimento, normalmente composto por pedras ou plástico. A camada de microrganismos formada à superfície do meio de enchimento designe-se por biofilmes (Metcalf e Eddy, 2003). Na Figura 2 está disposto um esquema do funcionamento de um leito percolador enquanto que na Figura 3 apresenta-se uma imagem que ilustra uma operação numa ETAR.

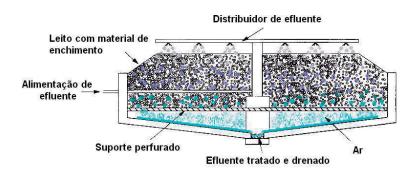


Figura 2 - Esquema de sistema de tratamento com leito percolador (Fonte – Santo, 2008).

A água residual é repartida sobre o leito, de geometria normalmente circular, através de um sistema de distribuição, sendo depois coletada por um canal de drenagem que se encontra na base e permite a circulação de ar no interior do meio de enchimento.

2.4.3. LAGUNAGEM

Os sistemas de lagunagem consistem em lagoas que, à partida, não têm necessidade de intervenção de meios mecânicos de arejamento no processo de tratamento. As lagoas de estabilização classificam-se como anaeróbias, aeróbias e facultativas consoante as condições de degradação e estabilização da matéria orgânica, enquanto que relativamente à natureza do efluente os sistemas podem ser primários ou secundários

(Sousa, 1981). Existem também as lagoas de maturação que são direcionadas à remoção de microrganismos patogéneos (Sperling, 2002). Também de um ponto de vista hidráulico as lagoas tomam diferentes classes, podendo ser de fluxo contínuo, intermitentes ou sem fluxo (Sousa, 1981).

Segue-se uma descrição breve dos tipos de lagoas de estabilização, sendo essa a classificação mais pertinente (Sousa, 1981):

- Lagoas anaeróbias lagoas com predominância de condições anaeróbias em toda a lagoa, o que conduz a uma degradação e estabilização por meios anaeróbicos;
- Lagoas aeróbias lagoas caracterizadas por condições aeróbias, com degradação e estabilização da matéria orgânica por processos provenientes da atividade simbiótica de algas e bactérias;
- Lagoas facultativas Lagoas com condições aeróbias predominantes na zona superficial e anaeróbicas no restante espaço.

 $\textbf{Figura 3} - \text{Lagoas de estabiliza}\\ \textbf{\~{c}ao} \text{ (Fonte } -\underline{\text{http://www.google.pt/imagens}} \text{ - lagoa de estabiliza}\\ \textbf{\~{c}ao}).$

A lagunagem é um processo que necessita de bastante disponibilidade de área, altas temperaturas e exposição solar e a sua manutenção requer poucos ou nenhuns equipamentos (Sperling, 2002). É devido a estas características que os sistemas de lagunagem aplicados ao tratamento de efluentes provenientes de pequenas povoações no território português têm maior incidência no Alentejo.

2.4.4. FOSSAS SÉTICAS

2.4.4.1. ASPETOS GERAIS

As fossas sépticas são compartimentos retangulares, normalmente situados abaixo do nível da superfície do solo, que recebem águas residuais domésticas e as retêm por alguns dias. São normalmente totalmente compostas por betão ou somente na soleira e cobertura sendo as paredes de alvenaria de tijolo maciço ou de pedra (Morais, 1977). Durante o tempo que o efluente permanece na fossa séptica os sólidos suspensos tendem a sedimentar no fundo e serem digeridos anaerobicamente formando lamas (Mara, 1996).

Pensa-se que as fossas sépticas tenham sido criadas em França por Jean-Louis Mouras em 1881, tendo-se o seu uso difundido rapidamente pelo mundo (Edeline, 1982 in Marques e Dias, 2006).

As condições de anaerobiose são mantidas com a ajuda de uma camada de espuma que se forma na superfície (Mara, 1996) e é composta pelos sólidos flutuantes do efluente, tais como gorduras, detritos vegetais e alguns sólidos mais densos que são emulsionados com ar. Esta película que se encontra na superfície tem a denominação de escuma. A sedimentação dos sólidos suspensos dá-se devido à diminuição brusca de velocidade do fluxo e ação do próprio peso das partículas (Morais, 1977). Tem de se proceder periodicamente à remoção das lamas acumuladas, ou seja, ao esvaziamento da fossa séptica.

As fossas sépticas individuais servem geralmente uma habitação, contudo podem ser utilizadas de forma comunitária até cerca de 300 residências. Não são apropriadas para situações de densidade urbana alta nem consideradas a melhor opção para áreas com pouco fluxo de efluente residual (Mara, 1996). Quando um agregado de residências é servido por uma fossa séptica comum a todas pode ser vantajoso no sentido de os custos por habitação serem reduzidos, sendo tanto mais económico quanto maior o número de residências servidas.

Um dos critérios mais relevantes na projeção é o tempo de retenção, ou seja, a razão entre o caudal médio diário e o volume útil da fossa séptica. Este fator vai determinar o tempo que a água residual permanece dentro da fossa, estipulando assim o tempo suficiente à deposição dos sólidos e digestão das lamas.

2.4.4.2. PROCESSOS QUÍMICOS E BIOLÓGICOS

O rápido consumo de oxigénio propícia a digestão anaeróbica ou séptica das lamas, que consequentemente conduz à estabilização parcial ou total destas. Dependendo da temperatura e tempo que as lamas ficam retidas no tanque estas podem sofrer uma redução de volume entre 50 e 80%. Os compostos solúveis e gases (dióxido de carbono, azoto e sulfureto de hidrogénio) formados na sequência da digestão das lamas pelas bactérias anaeróbias arrastam microrganismos responsáveis pela decomposição séptica dos sólidos coloidais e organismos solúveis, podendo também provocar a ressuspensão de partículas previamente decantadas. Os gases libertados nas fossas sépticas podem formar atmosferas tóxicas.

A digestão das lamas na fossa séptica tem três fases distintas. A primeira fase da decomposição das lamas dura aproximadamente duas semanas e é quando se dá a transformação, a 15°C, das substâncias mais facilmente degradáveis como os açúcares e compostos azotados solúveis, que conduzirá à formação de ácidos gordos e dos gases já referidos atrás.

Na segunda fase, que dura cerca de três meses, dá-se a decomposição dos ácidos gordos e compostos azotados formados anteriormente, originando substâncias cujo odor é desagradável. É nesta altura que as escumas se formam pois estas lamas são espumosas devido à presença de gases e tendem a subir até à superfície.

Na terceira e última etapa, que toma a denominação de fermentação alcalina ou metânica, os produtos mais resistentes são finalmente degradados, como por exemplo as proteínas. Estes processos dão origem a uma elevada formação de gases e também reduzem bastante o tamanho das lamas, ao mesmo tempo que as estabilizam (Morais, 1977).

2.4.5. LEITOS DE MACRÓFITAS

Os leitos de macrófitas são sistemas de tratamento de água residual que utilizam plantas cujo crescimento se dá em solo saturado para a sua depuração (Dias e Soutinho, 1999) (IWA, 2000).

O termo *macrófitas* (macro plantas) é o utilizado em saneamento para as plantas usadas em tratamento de águas residuais neste tipo de sistemas, entre as quais estão os caniços, juncos, tábuas (espadanas), jacintos-de-água e lentilhas de água. Esta designação não é a correta do ponto de vista científico para descrever estas plantas (que são aquáticas ou

anfíbias aquáticas) ou para as zonas húmidas por elas formadas. A expressão *macrófitas* surge no sentido contrário ao vocábulo *micrófita* (micro plantas), também usado em saneamento, para designar algas microscópicas, bactérias, micro-fungos e alguns protistas que existem em lagunagem que só são possíveis de observar ao microscópio, ou seja, descreve plantas que são observáveis a "olho nu", que são macroscópicas (Dias e Soutinho, 1999).

Para este tipo de unidades onde se tratam águas residuais recorrendo a plantas características de zonas húmidas existem outras designações, tais como "lagoas de macrófitas", "fito-ETAR's", "fitolagunagem", "ecossistemas húmidos artificiais" e "zonas húmidas construídas". A nomenclatura utilizada nos Estados Unidos da América, Canadá (anglófono), Austrália e África do Sul para leitos de macrófitas são "constructed wetlands" (CW's) ou "treatment wetlands", enquanto que na Grã-Bretanha o termo utilizado é "reed bed treatment systems" (RBTS's) (Dias e Soutinho, 1999).

As zonas húmidas naturais, ou seja, leitos de plantas aquáticas ou anfíbias aquáticas que ocorram de forma natural na natureza, já são utilizados como local de descarga de esgotos desde o surgimento das redes de drenagem. O início do estudo das zonas húmidas como tecnologia de tratamento de águas residuais surgiu na Alemanha por volta dos anos 60, mais precisamente no trabalho de Kathe Seidel e respectivos colegas, entre os quais Reinhold Kickuth, no Instituto Max Planck (Dias e Soutinho, 1999) (IWA, 2000).

Os leitos de macrófitas têm vindo a aumentar a sua importância a nível internacional desde que os seus fundadores o desenvolveram até hoje.

A IAWQ (International Association on Water Quality) foi das primeiras entidades a mostrar interesse sobre este tipo de sistemas de depuração de água residual através do patrocínio e organização de conferências internacionais e respectivas publicações das comunicações nelas apresentadas.

Existem muitas outras instituições que têm investigado os leitos de macrófitas, entre as quais a EPA, o WRc, o CEMAGREF e inúmeras universidades de países como Estados Unidos da América, Reino Unido, Viena de Áustria, Alemanha e Dinamarca (Dias e Soutinho, 1999).

2.4.5.1. DESCRIÇÃO SUMÁRIA

Um leito de macrófitas é uma associação entre água, substrato, plantas, detritos de plantas, invertebrados e também microrganismos. Os mecanismos que participam no aumento da qualidade da água são extensos e muitas vezes interligados, sendo os principais os seguintes:

- Deposição das partículas suspensas;
- Filtração e precipitação química pelo contacto da água com o substrato e os detritos das plantas;
- Transformação química;
- Adsorção e permuta de iões na superfície das plantas, substrato, sedimentos e detritos das plantas;
- Decomposição, transformação e absorção de poluentes e nutrientes por parte das plantas e microrganismos;
- Predação e morte de patogénicos.

Quanto mais estes mecanismos forem potenciados maior será a eficácia do tratamento do leito de macrófitas.

Os leitos de macrófitas são uma imitação das condições de tratamento que ocorrem nas zonas húmidas naturais mas com a particularidade de fornecerem flexibilidade de poderem ser construídos em qualquer lugar e assim poderem ser utilizados no tratamento de água residual primária ou secundária bem como águas com outra origem. Os leitos de macrófitas são uma tecnologia que do ponto de vista económico e técnico se revelam exequíveis e vantajosos no tratamento de água residual e escorrências pelas seguintes razões:

- Menores custos a nível de construção que outras opções de tratamento;
- Despesas de operação e manutenção são baixas;
- Operação e manutenção necessitam de intervenções locais apenas periodicamente;
- Capacidade de tolerar flutuações de caudal;
- Aptidão de tratamento de efluentes com carga orgânica baixa;
- Facilidade em reutilização e reciclagem de água.

Numa perspetiva ambiental e ecológica, os leitos de macrófitas podem também ser uma escolha muito apelativa pois a sua construção pode ser efetuada de maneira a que os

leitos se adaptem ao meio circundante e podem constituir habitat para vários seres animais (IWA, 2000).

Figura 4 – Leito de macrófitas (Fonte – http://www.google.pt/imagens - leito de macrofitas).

2.4.6. DIGESTÃO ANAERÓBIA

Denomina-se de tratamento anaeróbio de águas residuais, qualquer processo de digestão que resulte na transformação da matéria orgânica biodegradável, na ausência de oxidante externo, com produção de metano e dióxido de carbono, deixando na solução aquosa subprodutos como amónia, sulfuretos e fosfatos. O processo de digestão é desenvolvido por uma sequência de ações realizadas por uma gama muito grande e variável de bactérias, no qual pode-se distinguir quatro fases subsequentes: hidrólise, acidogênese, acetogênese e metanogênese (van Haandel e Lettinga, 1994).

A decomposição anaeróbia é, pois, um processo biológico envolvendo diversos tipos de microrganismos, na ausência do oxigênio molecular, com cada grupo realizando uma etapa específica, na transformação de compostos orgânicos complexos em produtos simples.

2.5. TRATAMENTOS FÍSICO – QUÍMICOS DAS ÁGUAS RESIDUAIS DOMÉSTICAS

2.5.1. CORREÇÃO DO PH

É sabido que o pH de uma água residual submetida a um tratamento biológico deve estar compreendido no intervalo 5,0 a 8,5, com valores ótimos entre 6,5 e 7,5. Nos países que já adotaram normas de qualidade a impor aos efluentes para que possam ser lançados em redes de coletores dotados de estação de tratamento, os limites para o pH rondam o intervalo 6 a 9.

Como o pH das águas residuais domésticas anda, normalmente, à volta do intervalo 6,5 a 7,5, a correção do pH apenas terá lugar quando da inclusão de efluentes industriais, cujo pH poderá ser muito baixo ou muito elevado. Nestes casos, por razões óbvias, a correção do pH far-se-á em tratamento prévio, antes da entrada do efluente industrial na rede de coletores de águas residuais domésticas.

Os compostos mais usados para a correção do pH são a cal e os ácidos clorídrico ou sulfúrico (Pita, 2002).

2.5.2. PRECIPITAÇÃO QUÍMICA

Antigamente, a precipitação química era usada, com o objetivo de aumentar o grau de remoção da ${\rm CBO}_5$ e dos sólidos suspensos, quer como auxiliar da operação de sedimentação quer nos casos em que havia variações sazonais importantes na composição da água residual ou quando se tornava necessário um tratamento prévio.

Atualmente, verifica-se um renovado interesse pela precipitação química, porque, por um lado é um processo extremamente eficiente na remoção dos chamados nutrientes, especialmente o fósforo, e por outro porque, em conjunto com a adsorção pelo carvão ativado, constitui um sistema completo de tratamento de águas residuais. A importância deste tratamento químico completo resulta, não só do facto de constituir uma alternativa ao clássico tratamento biológico, mas também porque é mais eficiente do que aquele na remoção de certas substâncias orgânicas resistentes ao tratamento biológico. Por exemplo, a CQO do efluente de um tratamento químico completo (precipitação química e adsorção pelo carvão ativado) ronda os 10 a 20 mg/l enquanto o efluente do tratamento biológico apresenta 100 a 300 mg/l de CQO (Pita, 2002).

2.5.3. ADSORÇÃO

O processo de adsorção pode ser descrito como a passagem de moléculas de uma solução para a superfície de um sólido, devido à formação de ligações físicas fracas ou químicas fortes com as moléculas superficiais do sólido. É costume distinguir entre adsorção química e adsorção física, consoante as ligações entre o adsorvente e o adsorvido são fortes ou fracas. No primeiro caso, o fenómeno é frequentemente irreversível, enquanto no segundo, que é o mais usado na remoção de constituintes de águas residuais pelo carvão ativado, o fenómeno é reversível, permitindo a regeneração do adsorvente (Pita, 2002).

O carvão ativado utilizado no tratamento de águas residuais e também no de águas de abastecimento, pode apresentar-se granulado ou em pó. O carvão ativado em grãos é utilizado sob a forma de leitos fixos instalados em colunas por onde a água a tratar passa, no sentido descendente. A regeneração pode ser feita, oxidando a matéria orgânica adsorvida por combustão. Com este processo de regeneração, perde-se cerca de 10% do carvão ativado, que terá de ser substituído, verificando-se que a capacidade de adsorção do carvão regenerado é bastante menor que a do carvão virgem.

A adsorção com carvão ativado também pode ser conseguida utilizando o produto em pó. Nesse caso, o carvão ativado é adicionado à água a tratar num tanque de contacto. Após um certo tempo de contacto, o carvão deposita-se no fundo do tanque e a água tratada pode ser removida. Quando o carvão em pó usado é muito fino, pode haver necessidade de adicionar também um coagulante, por exemplo, um polieletrólito, para facilitar a sedimentação das partículas de carvão ou, então terá de utilizar-se uma operação de filtragem através de filtros rápidos de areia.

Em qualquer caso, porém, quer se use carvão ativado em grãos ou em pó, o processo de tratamento por adsorção, é sempre um tratamento de afinação, a aplicar apenas aos efluentes dos tratamentos biológicos normais. A função do carvão ativado, é apenas a de remover a matéria orgânica que permaneceu em solução após o tratamento secundário (Pita, 2002).

2.5.4. DESINFEÇÃO

Na maior parte das estações de tratamento, as águas residuais sofrem apenas um processo de tratamento até ao nível secundário, o qual não é suficiente para diminuir consideravelmente o seu teor em microrganismos patogénicos. A desinfeção das águas residuais surge assim, como uma necessidade de tratar as águas residuais com o objetivo de proteger a população de microrganismos causadores de doenças.

O termo desinfeção, designa neste caso, a utilização de meios destinados a destruir na água residual os microrganismos suscetíveis de serem patogénicos para o Homem, e é o mais importante processo unitário de prevenção na transmissão de doenças.

A desinfeção da água residual pode ser efetuada por vários métodos, que podem ser agrupados nas seguintes categorias:

- Químicos Tais como o cloro e seus compostos, o bromo, o iodo, o ozono, o fenol e compostos fenólicos, os álcoois, os detergentes sintéticos, os compostos de amónio quaternário, o peróxido de hidrogénio e várias bases e ácidos.
- Físicos Calor. O recurso à utilização de calor na desinfeção de água residual não é normalmente utilizado devido à quantidade elevada de água residual a tratar e ao elevado custo do processo.
- Mecânicos As bactérias e outros organismos são também removidos por meios mecânicos que ocorrem durante o tratamento da água residual.
- Radiação- Os principais tipos de radiação são a ultra violeta (U.V.), a gama, a eletromagnética, a acústica e a de partículas (Monteiro, *et al.*, 2000).

2.6. NORMAS LEGAIS DE DESCARGA DE ÁGUAS RESIDUAIS DOMÉSTICAS

No domínio legal português são dois os Decretos-Lei que são mais pertinentes na proteção dos meios hídricos que incidem sobre a descarga de efluentes de águas residuais, designadamente:

- Decreto-Lei nº152/97, de 19 de Junho, que transpõe a Diretiva 91/270/CEE do Conselho, de 21 de Maio de 1991, referente à recolha, tratamento e descarga de águas residuais urbanas no meio aquático;

- Decreto-Lei n°236/98, de 1 de Agosto, que estabelece normas, critérios e objetivos de qualidade com a finalidade de proteger o meio aquático e melhorar a qualidade das águas em função dos seus principais usos, transpondo várias diretivas do conselho, entre as quais:
- 76/464/CEE e 80/68/CEE, referentes à poluição proveniente de determinadas substâncias perigosas lançadas no meio aquático, inclusivamente no sentido de reduzir ou eliminar na poluição causada pelo despejo de águas residuais no meio aquático;
- 78/659/CEE, referente à qualidade das águas doces que têm a necessidade de ser protegidas ou melhoradas para permitirem a vida dos peixes.
- NP 4434:2005, a norma portuguesa que estabelece os requisitos de qualidade das águas residuais urbanas tratadas a utilizar na rega e define critérios de escolha dos equipamentos e processos de rega, assim como a sua execução. Define ainda os procedimentos a adotar na proteção e monitorização ambiental nas zonas regadas com água residual.
- O Decreto-Lei nº152/97 determina os limites de descarga de águas residuais urbanas que sejam sujeitas a tratamento secundário, no qual contém o conceito de *tratamento apropriado* que é relativo a populações servidas por sistemas de tratamento de águas residuais com menos de 200 habitantes equivalentes. Este conceito é definido como o "tratamento das águas residuais urbanas por qualquer processo e ou por qualquer sistema de eliminação que, após a descarga, permita que as águas recetoras satisfaçam os objetivos que se lhes aplicam".

Apesar do conceito de *tratamento apropriado*, a entidade licenciadora (CCDR - Comissão de Coordenação e Desenvolvimento Regional) exige em regra, para pequenos aglomerados, que sejam respeitados os limites de poluentes exigidos a ETAR com populações superiores a 2000 habitantes equivalentes. Esta situação resulta, sobretudo, da falta de caracterização dos caudais e graus de contaminação dos meios hídricos em que os efluentes são descarregados, por forma a precaver a ocorrência de impactes cumulativos (Galvão, 2008).

Quando o meio recetor de águas residuais é alvo de uso balnear, fonte de água para rega agrícola ou para outros tipos de utilização a jusante, pode ser exigido a aplicação de tratamento terciário em função dos parâmetros microbiológicos, de acordo com o Decreto-Lei nº236/98.

2.7. REUTILIZAÇÃO DE ÁGUAS RESIDUAIS TRATADAS

A reutilização da água, através do reaproveitamento de águas residuais tratadas, provém da necessidade de dar resposta à escassez de água a nível mundial. Sendo Portugal um país com inúmeras áreas agrícolas e espaços verdes, o aproveitamento de águas residuais é sem dúvida um benefício para a rega de zonas onde a falta de água é mais significativa, como por exemplo as regiões do Alentejo e Algarve. A reutilização da água, para além de ser uma medida que permite a recuperação de recursos fundamentais para as plantas, como é o caso da água e dos nutrientes, evita ainda a poluição dos meios recetores. Atualmente, a utilização de águas residuais é uma atividade vulgar, embora seja aplicada com mais frequência na agricultura e na rega de espaços verdes (Beltrão, 2002). Contudo, quanto maior a escassez de recursos hídricos no mundo, maior será a tendência para se recorrer à reutilização das águas residuais noutras aplicações para além da rega.

Pode assim afirmar-se que a reutilização de águas residuais apresenta duas vertentes essenciais (Asano, 2001): a económica, uma vez que disponibiliza recursos de forma lucrativa (Beltrão, 2002), e a ambiental, reduzindo as descargas nos meios recetores, evitando assim a poluição dos mesmos. A redução do volume de descarga é também um forte impulso para a reutilização de águas residuais (Stagnitti et al., 1998).

2.7.1. PRINCIPAIS APLICAÇÕES DAS ÁGUAS RESIDUAIS TRATADAS

Segundo Asano (2001), Asano e Catruvo (2004) e Marecos do Monte e Albuquerque (2010), as águas residuais tratadas podem ser reutilizadas e aplicadas em áreas agrícolas, espaços verdes, indústria, recarga de aquíferos, utilizações recreativas e ambientais e utilizações urbanas não potáveis.

2.7.1.1. AGRICULTURA

É um sector altamente consumidor de recursos hídricos. No entanto, ao longo dos anos, tem-se vindo a tomar medidas alternativas para baixar este consumo. Uma das medidas foi a utilização de águas residuais tratadas na rega das culturas, apresentando-se assim, hoje em dia, como o sector, a nível mundial, que utiliza a maior quantidade de efluentes tratados.

A aplicação de águas residuais na agricultura é considerada uma fonte de água e nutrientes muito importante, que para além de reutilizar água, reduzindo os custos com água potável, reutiliza nutrientes, reduzindo assim a aplicação de fertilizantes, com a consequente redução de custos.

Contudo, a qualidade das águas residuais tratadas utilizadas na rega dos campos agrícolas é bastante exigente, uma vez que deverá satisfazer requisitos agronómicos e de saúde pública (Asano, 2001; Marecos do Monte e Albuquerque, 2010).

A utilização de águas residuais tratadas no sector agrícola pode originar impactes positivos e negativos, dependendo do planeamento do projeto e da gestão praticada (WHO, 2006). Este tipo de uso compreende três variáveis, dependentes entre si: o nível de tratamento, o método de rega e o tipo de cultura a regar, sendo deste modo possível controlar os riscos para a saúde pública. Os riscos ambientais resultantes da utilização das águas residuais tratadas podem ser controlados, tendo em consideração a caracterização do solo da área a regar, a sua topografía e ainda a presença de aquíferos. A rega com águas residuais, caso não seja devidamente controlada e regulada, pode também estar associada a riscos para a saúde pública, especialmente quando os produtos agrícolas são consumidos a cru, como é o caso dos vegetais.

2.7.1.2. REGA DE ESPAÇOS VERDES

O Programa Nacional para o Uso Eficiente da Água (PNUEA) declara a necessidade de se reutilizar a água residual tratada, nomeadamente na rega de campos desportivos, campos de golfe e outros espaços verdes de recreio (MAOT, 2001). Este tipo de aplicação é considerado pelo PNUEA como o segundo sector que maior quantidade de água residual tratada aplica, principalmente em países desenvolvidos.

Em Portugal existe cada vez mais interesse em reutilizar águas residuais na rega de campos de golfe, por serem zonas altamente consumidoras de água. A utilização de águas residuais, convenientemente tratadas, na rega de espaços verdes, é, segundo Asano (1998) e Pereira (2009), uma vantagem competitiva a nível técnico-económico, além de ser uma opção ambientalmente recomendável. Contudo, esta atividade tem como condicionantes a saúde pública, o controlo da desinfeção, a aceitação pública e as ligações cruzadas com a rede de água potável.

Os fatores que condicionam a reutilização de águas residuais em espaços verdes são os mesmos que condicionam a reutilização no sector agrícola, nomeadamente características químicas que são favoráveis ao crescimento das plantas regadas e características microbiológicas que sejam compatíveis com a proteção da saúde pública. A água de rega deve satisfazer as necessidades hídricas das plantas, proporcionar o seu bom desenvolvimento vegetativo e, no caso de serem utilizadas na rega águas residuais tratadas, a qualidade dessas águas deve cumprir os requisitos de proteção da saúde pública. A aparência é um fator bastante importante a ter em conta em espaços paisagísticos, pelo que devem ser evitados problemas de fitotoxicidade (Marecos do Monte e Albuquerque, 2010).

2.7.1.3. INDÚSTRIA

O sector industrial é considerado por Asano (2001), Asano e Catruvo (2004) e Marecos do Monte e Albuquerque (2010) como o terceiro maior utilizador de águas residuais tratadas, principalmente em sistemas de refrigeração. A utilização do efluente tratado em partes específicas do processo industrial pode obrigar a um tratamento adicional, para além do tratamento que a água residual já sofreu de forma convencional.

Os padrões de qualidade exigidos para a reutilização de águas residuais neste sector são específicos para cada tipo de indústria. Existem atividades industriais que exigem elevada qualidade da água, exemplo disso são as unidades com produção de vapor e, existem atividades que exigem menor qualidade da água utilizada, como por exemplo águas de arrefecimento. Segundo a USEPA (2004), as indústrias que possuem sistemas de arrefecimento são grandes consumidoras de água e são também as que mais poderão beneficiar da reutilização deste recurso, uma vez que podem utilizar água com menor qualidade para a finalidade de arrefecimento. No entanto, este tipo de aplicação tem como condicionantes a probabilidade de ocorrência de incrustações, corrosão e filmes biológicos, ou seja, existem determinados requisitos da água residual que devem ser controlados de forma a não provocar incrustações e corrosão dos equipamentos industriais (Marecos do Monte e Albuquerque, 2010).

Assim, os fatores considerados como determinantes para a reutilização de águas residuais em indústrias são a qualidade da água e o balanço entre as necessidades da própria indústria e as disponibilidades existentes. Com a entrada em vigor de normas cada vez mais rigorosas, a indústria tem vindo a implementar tecnologias menos

poluentes e menos consumidoras de água. Esta redução nos consumos de água tratada tem levado ao aumento da utilização de águas residuais tratadas e como consequência à diminuição da dependência das indústrias, relativamente às origens de abastecimento tradicionais (Marecos do Monte e Albuquerque, 2010).

2.7.1.4. RECARGA DE AQUÍFEROS

A reposição de água subterrânea, de forma natural, é um processo que ocorre muito lentamente. No entanto, a sua exploração e consumo ocorre de forma cada vez mais acelerada relativamente à taxa de reposição. Este facto conduz ao esgotamento deste recurso, sendo desta forma urgente proceder à sua reposição de forma artificial através de medidas alternativas, como é o caso da utilização de águas residuais tratadas.

A recarga de aquíferos é uma forma de reposição artificial de águas subterrâneas, sendo considerada a quarta maior aplicação de águas residuais tratadas. É um processo que tem como objetivos impedir ou atenuar o rebaixamento do nível freático em zonas de escassez de água subterrânea e a proteção dos aquíferos nas zonas costeiras contra a intrusão salina. A execução deste processo deverá ser rigorosamente monitorizada e controlada, sendo muitas das vezes uma forma indireta de reutilização de água para posterior produção de água potável. A recarga de aquíferos depende do tipo de aquífero (confinado ou livre) e pode ser realizada de forma direta, em que a água residual tratada é bombada diretamente para a zona de água subterrânea ou indiretamente através da introdução de um sistema de infiltração do efluente no solo, ou através de furos de injeção do efluente no solo, na zona imediatamente acima do nível freático (Asano, 2001; Asano e Catruyo, 2004; Marecos do Monte e Albuquerque, 2010).

Os padrões de qualidade da água exigidos neste tipo de processo têm o intuito de evitar a poluição e contaminação das águas subterrâneas, prevenir a diminuição da capacidade de infiltração do solo, reduzir os efeitos tóxicos devido a compostos orgânicos e evitar que o solo seja excessivamente solubilizado (Asano e Catruvo, 2004).

2.7.1.5. UTILIZAÇÕES RECREATIVAS E AMBIENTAIS

São o quinto maior uso de água residual tratada em países industrializados e consistem na reutilização de águas residuais em massas de água naturais ou artificiais, tendo como

finalidade a alimentação de lagos e lagoas para a prática de atividades recreativas, e ainda a conservação ou reabilitação de zonas húmidas naturais ou artificiais. Permitem, assim, a preservação e desenvolvimento de habitats (Asano, 2001; Marecos do Monte e Albuquerque, 2010).

A qualidade da água residual tratada exigida neste tipo de aplicação depende fundamentalmente da massa de água onde serão lançadas e o tipo de contacto que o ser humano poderá ter com essas mesmas massas de água. Os parâmetros mais relevantes a ter em consideração neste tipo de aplicação são os SST, os coliformes fecais e a turvação da água residual. Contudo, os metais pesados devem ser monitorizados com frequência, uma vez que pode ocorrer bioacumulação nos seres vivos que habitam as massas de água (Marecos do Monte e Albuquerque, 2010).

2.7.1.6. UTILIZAÇÕES URBANAS NÃO-POTÁVEIS

Segundo Asano (2001) e Marecos do Monte e Albuquerque (2010), em meios urbanos, a utilização de água potável em atividades que não necessitam de água com elevada qualidade pode ser substituída por água residual tratada. Exemplos disso são os combates a incêndios, descargas de autoclismos, lavagem de pavimentos, lavagem de contentores de resíduos urbanos. As vantagens económicas da utilização deste tipo de reutilização em meios urbanos podem ainda ser reforçadas com a aplicação de rega paisagística. Contudo, a reutilização de águas residuais tratadas, em sistemas urbanos não potáveis, apenas tem vantagem quando existe um volume significativo exigido para satisfazer as necessidades pretendidas.

A garantia do abastecimento de água a reutilizar em quantidade é seguramente o fator condicionante da sua reutilização. A reutilização de água residual, nomeadamente para a descarga de autoclismos e combate a incêndios, deverá apresentar características de qualidade que não conduzam ao crescimento de biofilmes nas paredes das tubagens e a fenómenos de deposição, corrosão e incrustações.

3. MATERIAIS E MÉTODOS

3.1. ORIGEM E RECOLHA DA ÁGUA RESIDUAL

As águas residuais utilizadas neste estudo provêm de pequenos aglomerados situados no Baixo Alentejo. O território tem uma área total de 68,1 km² e uma densidade populacional de 7,9 hab/km², sendo uma das principais atividades económicas a agricultura.

A recolha das águas residuais foi realizada à entrada e saída de 7 Estações de Tratamento de Águas (ETAR).

Tabela 4 – Datas de recolha das amostras.

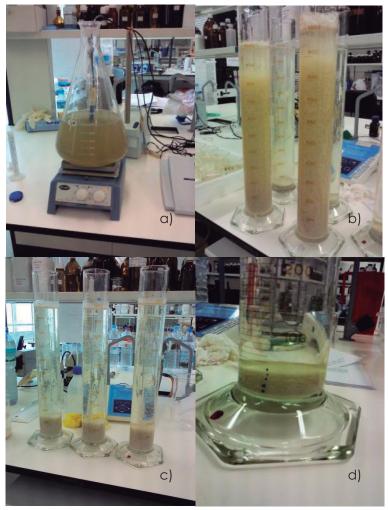
Amostragens	Data da recolha das amostras
1 ^a	25 de Janeiro de 2012
2 ^a	29 de Fevereiro de 2012
3 ^a	29 de Março de 2012

Após a sua recolha a água residual foi transportada ao Laboratório de Tratamento de Águas da ESAB, onde foi refrigerada até ao seu tratamento.

Uma vez que se tratava de um elevado número de amostras, as mesmas foram catalogadas de acordo com a ETAR de origem, por ordem alfabética, desde A até G. A segunda letra da catalogação corresponde à identificação da amostra referente ao afluente à ETAR Bruta (B) ou a água tratada à saída da ETAR (T).

Na Tabela 5 apresentam-se os tratamentos instalados e população servida nas ETAR de onde foram recolhidas as águas residuais.

ETAR Designação da amostra Tratamento instalado População servida (hab.) AB 614 Α Fossa séptica ΑT ВВ В Fossa séptica 188 BT CB C 1062 Lagoa de estabilização CTDB D 405 Fossa séptica DT EB E 3543 Lamas ativadas ET FB F Leito percolador 495 FT GB G Fossa séptica 550 GT


Tabela 5 – Tipo de tratamento instalado nas ETAR e população servida.

3.2.INSTALAÇÕES E PROCEDIMENTO EXPERIMENTAL

3.2.1. ENSAIOS DE PRECIPITAÇÃO QUÍMICA BÁSICA COM CA(OH)2

Os ensaios de precipitação química básica foram realizados num Erlenmeyer de 5 litros de capacidade onde foi colocado um magnete e 3 litros de água residual doméstica. Foi ainda colocado um medidor de pH, como mostra a Figura 5. Seguidamente o Erlenmeyer foi colocado na placa agitadora e adicionada solução de Cal a 200 g/L até à obtenção do pH desejado. Em cada um dos ensaios foi registada a quantidade de solução gasta.

Depois de atingir o pH pretendido, transferiu-se a água para provetas normalizadas de 1000 ml com 37 cm de altura de modo a efetuar ensaios de sedimentabilidade das lamas, assim como a quantidade de lamas formadas. Estes ensaios consistiam na identificação do tipo de sedimentação que estava a correr, da avaliação da sedimentação das lamas ao longo do tempo, através do registo da quantidade de lamas em cada espaço de tempo até à sua compactação. Finalizados os ensaios de sedimentabilidade das lamas, a água sobrenadante foi separada das mesmas e procedeu-se à sua caraterização físico-química.

Figura 5 – Aspeto físico da água residual durantes os ensaios; a) 1ª etapa – antes da adição da cal; b) Após transferência da água para as provetas – Inicio da decantação de lamas; c) Decantação de lamas; d) Fase final da decantação de lamas.

3.2.2. ENSAIOS DE NEUTRALIZAÇÃO NATURAL

Após a caracterização físico-química das diferentes águas, no primeiro ensaio, a mesma foi submetida a diferentes pH de modo a selecionar o pH de trabalho nas reações de precipitação química básica, avaliando o efeito do mesmo na quantidade de reagente, CQO, condutividade e absorvâncias a 254 e 410 nm. Após análise dos resultados, foi selecionado o pH que permitia obter um efluente final com melhores características físico-químicas. A esse pH foram realizados ensaios de precipitação química e neutralização natural das várias amostras após as três datas de amostragem.

Após a adição de solução de cal necessária para atingir o pH pretendido, procedeu-se à sedimentação das lamas. Após sedimentação o sobrenadante foi transferido para uma tina exposta à atmosfera, com as seguintes dimensões 20x20x20 cm, conforme esquema da Figura 6. Seguidamente procedeu-se ao registo das variações de pH, condutividade, CQO, Abs 254 e 410 ao longo do tempo, o tempo zero foi o coincidente com a colocação da amostra na tina.

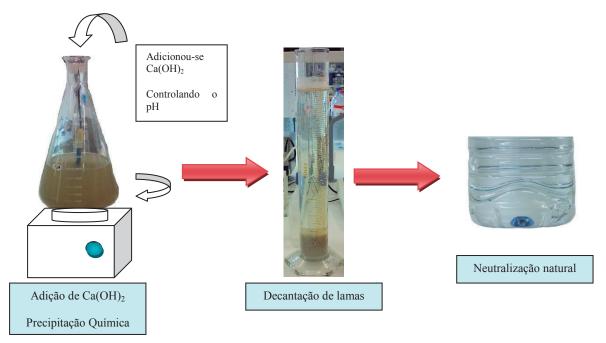


Figura 6 – Esquema de ensaio instalado no Laboratório.

3.3. PROCEDIMENTOS ANALÍTICOS

3.3.1. pH

O pH das amostras foi determinado utilizando um Potenciómetro WTW, modelo Inolab, pH Level 1, de acordo com o indicado em Standard Methods (2003). A determinação do pH dá a medida da atividade dos iões H⁺ na água.

3.3.2. Condutividade

As soluções conduzem a corrente elétrica graças à migração dos iões (transferência de massa), sob a influência de um campo elétrico, à qual se chama condutividade. A

condutividade elétrica de uma solução constitui uma medida da maior ou menor facilidade com que determinada solução dá passagem à corrente elétrica.

A condutividade das amostras foi medida, utilizando um condutivímetro Metrhom modelo e célula condutimétrica de acordo com o indicado em Standard Methods (2003).

3.3.3. Absorvância

As absorvâncias foram determinadas por espectrofotometria. A espectrofotometria é o método de análises ótico mais usado nas investigações biológicas e físico-químicas. O <u>espectrofotómetro</u> é um instrumento que permite comparar a radiação absorvida ou transmitida por uma <u>solução</u> que contém uma quantidade desconhecida de <u>soluto</u>, e uma quantidade conhecida da mesma substância.

A Absorvância a 254nm, relativa a compostos aromáticos e insaturados (APAH) e absorvância a 410 nm (relativa a compostos responsáveis pela cor) (Kasprzyk-Hordern et al., 2006; APHA, 1998; Peuravuori et al., 2002; Pacheco and Peralta-Zamora, 2004; Rivas et al., 2005) foi medida num espectrofotómetro Ultrospec 2100.

3.3.4. Carência Química de Oxigénio (CQO)

O método utilizado para a determinação de CQO foi o indicado em Standard Methods of Analysis (2003), recorrendo ao método colorimétrico de refluxo fechado (5220-D;CQO). Baseia-se na ebulição da amostra, em presença de sulfato de mercúrio (II), uma quantidade conhecida de dicromato de potássio e de um catalizador de prata, em meio fortemente acidificado pelo ácido sulfúrico, durante duas horas. Uma parte do dicromato é reduzida pelas matérias oxidáveis presentes. Isto resulta na mudança do crómio do estado hexavalente (+6) para o estado trivalente (+3). O ião crómio (Cr³⁺) absorve fortemente na região de 600 nm, sendo as absorvâncias determinadas a este de comprimento de onda. Efectua-se uma curva de calibração utilizando padrões preparados com hidrogenoftalato de potássio.

3.3.5. Carência Bioquímica de Oxigénio (CBO)

A CBO foi determinada pelo princípio do método por diluição e inoculação o qual se baseia na determinação da concentração em oxigénio dissolvido de uma amostra de

água antes e depois de incubada. A incubação é realizada em frasco completamente rolhado, a uma temperatura controlada e na obscuridade, durante um determinado período de tempo (em dias). Em todas as análises realizadas em prol deste trabalho apenas foi determinada a CBO ao fim de 5 dias.

3.3.6. Oxigénio Dissolvido

O oxigénio dissolvido foi determinado de acordo com o método de Winkler modificado (ou método azida de sódio, para eliminar as interferências causadas pelo nitrito). Baseiase na oxidação do hidróxido de manganês pelo oxigénio dissolvido, em meio de iodeto alcalino, resultando um composto de manganês tetravalente. A acidificação deste composto oxida o iodeto a iodo. O iodo livre é determinado por titulação com uma solução padrão de tiossulfato de sódio. Seguiu-se o procedimento experimental indicado em Standard Methods (2003).

3.3.7. Azoto Amoniacal

O método utilizado para a determinação do azoto amoniacal foi o indicado em Standard Methods (2003), recorrendo ao método por destilação. Este método baseia-se na destilação do azoto amoniacal contido numa amostra de pH elevado (cerca de 9,5), na presença de solução tampão de borato para evitar a hidrólise de cianetos e de compostos orgânicos de azoto. O destilado foi recebido em solução de ácido bórico com indicador e titulado com uma solução de ácido clorídrico de concentração conhecida.

3.3.8. Azoto Kjeldhal

O método utilizado foi o descrito em Standard Methods (2003) o qual permite o doseamento do azoto no estado trivalente negativo. Considera-se como azoto Kjeldhal o azoto orgânico e amoniacal, contidos numa amostra, e passíveis de doseamento após mineralização.

O método baseia-se numa mineralização dos compostos orgânicos contidos na amostra, em presença de ácido sulfúrico concentrado a quente e em presença de sulfato de potássio, que eleva o ponto de ebulição da mistura, e de selénio como catalisador. O sulfato de amónio formado é destilado em meio fortemente alcalino, o destilado é recolhido numa solução de ácido bórico com indicador Tashiro e titulado com uma solução de ácido clorídrico de concentração conhecida.

3.3.9. Fósforo Total

Para a determinação do fósforo recorreu-se ao método do vanadato-molibdato. O método consistiu na mineralização da amostra por via seca e posterior solubilização do resíduo mineralizado com ácido. As diversas formas de fósforo foram assim convertidas a ortofosfatos e estes determinados através do método colorimétrico pelo ácido vanadomolibdofosfórico. O método baseia-se na reação do ortofosfato com o molibdato de amónio na presença de vanádio, formando-se o ácido vanadomolibdofosfórico de cor amarela e determinação da absorvância corresponde à cor desenvolvida a 470 nm.

3.3.10. Cálcio

O cálcio é determinado pelo método de complexiometria descrito em Standard Methods (2003). Esta determinação faz-se a um pH elevado (aproximadamente 12) em que o magnésio precipita sob a forma de hidróxido, não interferindo na determinação. A elevação do pH é conseguida por adição de NaOH à amostra. A amostra é titulada com o ligando etileno diamino-tetra-acético (EDTA), em presença de um indicador específico (calcon). Este método foi utilizado para determinação do Cálcio ao longo do tempo no processo de neutralização natural.

3.3.11. Cálcio e Magnésio

Para a determinação do Cálcio e Magnésio das amostras, utilizados no cálculo da SAR e Wilcox, foi utilizada a absorção atómica de chama no Laboratório de Controlo de Qualidade de Águas da Escola Superior Agrária de Beja.

3.3.12. Sólidos Suspensos Totais (SST)

A determinação do teor de SST baseou-se na pesagem dos sólidos que se obtêm após filtração de um determinado volume fixo de amostra, através de um filtro de fibra de vidro. Os sólidos retidos no filtro foram levados à estufa, em cadinho de vidro aferido a peso constante à mesma temperatura, sendo determinado o seu peso após a evaporação de toda a água retida no filtro.

3.3.13. Alcalinidade

A determinação da alcalinidade foi feita por volumetria, usando como titulante uma solução de ácido forte (HCl) de concentração conhecida. Como indicador utilizou-se a fenolftaleína, para determinar a alcalinidade à fenolftaleína e, quantificaram-se os grupos hidroxilo e carbonatos presentes. Prosseguiu-se a titulação com adição de indicador alaranjado de metilo, que permitiu determinar a concentração dos grupos hidroxilo, carbonatos e bicarbonatos presentes na amostra e, designada como alcalinidade total (2320- B) Standard Methods of Analysis (2003)).

3.3.15. Ferro, Manganês e Cádmio

O ferro, manganês e cádmio foram analisados por absorção atómica no laboratório de Controlo de Qualidade de Águas da Escola Superior Agrária de Beja.

3.3.16. Sódio e Potássio

O Sódio e Potássio foram determinados no laboratório de Controlo de Qualidade de Águas da Escola Superior Agrária de Beja, por fotometria de chama, em Fotómetro Corning Flame Photometer 410.

3.3.17. Coliformes Totais

Os Coliformes totais foram determinados no laboratório de Microbiologia da Escola Superior Agrária do Instituto Politécnico de Beja. Após estabilização química as amostras de água Residual tratada foram enviadas ao laboratório em frascos esterilizados, seguindo-se de imediato a sua análise segundo a norma ISSO 9308-1 de 2000, utilizando filtração por membrana de 0,45 µm e meio de cultura de Gelose Lauril Sulfato de Sódio e a confirmação em meio de cultura "Caldo Verde Brilhante OXOID CM31.

4. RESULTADOS E DISCUSSÃO

4.1. CARATERIZAÇÃO DA ÁGUA RESIDUAL

Na Tabela 6 apresenta-se as características físico-químicas, concentração média, dos vários parâmetros analisados, relativos aos afluentes e efluentes recolhidas nas ETAR, durante as três campanhas de amostragem.

Tabela 6 – Caracterização da água residual bruta (sigla B) e tratada (Sigla T) para os 14 pontos de amostragem.

	VP*	AB	AT	BB	BT	СВ	СТ	DB	DT	EB	ET	FB	FT	GB	GT
pН	6 – 9	8,06	7,74	8	7,5	7,72	7,44	7,98	7,0	8,1	7,78	7,7	7,74	7,7	7,72
SST (mg/l)	60	88	49	135	92,8	110,96	69	220	64	144	78	78	36	50	51
CBO ₅ (mg O ₂ /l)	25	283	65	345	281,6	233,3	267,7	374	138	352	118,2	271,6	77,2	130	94,2
CQO (mg O ₂ /l)	125	428,8	153	538	413,4	407,1	386	710	227	590	209	377	109	210	143
N Total (mg/l N)	15	79,7	60	113	74,6	65,3	47	116	59	74	51	58	26	58	43
P Total (mg/l P)	2	8,2	5,22	12,04	9,96	9,19	5,6	10,8	8,2	8,1	5,34	6,78	6,2	9,9	8,36

^{*} Valores paramétricos na descarga de águas residuais urbanas, estipulados no do Decreto – Lei nº 152/97 de 19 de Junho.

Resultados acima do VLE. Resultados abaixo do VLE.

Se compararmos as características físico-químicas da água bruta com a classificação das mesmas segundo Metcalf e EDDY (2003), verifica-se que relativamente ao parâmetro SST, a maioria das águas apresenta um valor típico de uma água residual doméstica de baixa carga.

Do confronto das características físico-químicas das águas residuais com o Quadro nº1, do Anexo 1 do Decreto-Lei nº 152/97, dos Requisitos para as descargas das ETAR urbanas (Tabela 6), verificou-se que nenhuma das amostras cumpre na totalidade os VP, principalmente para os parâmetros CBO₅, CQO e Azoto Total, preconizados. Estes resultados permitem concluir simultaneamente da ineficiência dos sistemas de tratamento das ETAR, como mostra os valores de caracterização das amostras relativas a água tratada.

Esta situação é o espelho da atual situação nacional, pois para além de incompleta, a atual rede apresenta diversos problemas quer nos ramais de ligação e coletores que

carecem de um maior esforço de reabilitação (ERSAR, 2011) quer no mau funcionamento das ETAR.

Em 1996, cerca de dois terços das ETAR construídas com recurso a fundos comunitários estariam paradas ou em más condições (Ferreira, 2008) ou ainda de acordo com o relatório da Inspeção-geral do Ambiente e Ordenamento do Território datado de 2004, muitas ETAR apresentavam um desempenho insuficiente devido a erros de conceção ou de construção, ou a más práticas de gestão.

4.2. ESTUDO DO TRATAMENTO DAS ÁGUAS RESIDUAIS POR APLICAÇÃO DE PRECIPITAÇÃO QUÍMICA BÁSICA COM CA(OH)₂

No método de precipitação química com cal, as reações que podem ocorrer quando a cal é adicionada a um efluente contendo sais de cálcio e magnésio estão representadas abaixo (Richter, 1991):

$$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$$
 (1)

$$Ca(HCO3)2 + Ca(OH)2 \rightarrow 2CaCO3 + 2H2O$$
 (2)

$$Mg(HCO_3)_2 + Ca(OH)_2 \rightarrow CaCO_3 + MgCO_3 + 2H_2O$$
 (3)

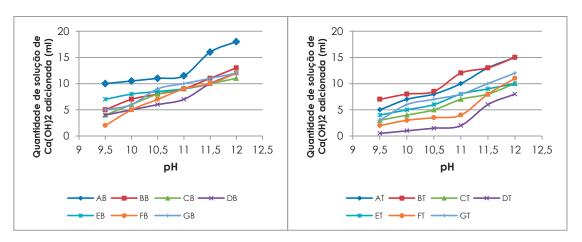
$$MgCO_3 + Ca(OH)_2 \rightarrow CaCO_3 + Mg(OH)_2$$
 (4)

$$2NaHCO3 + Ca(OH)2 \rightarrow CaCO3 + Na2CO3 + 2H2O$$
 (5)

$$MgSO_4 + Ca(OH)_2 \rightarrow Mg(OH)_2 + CaSO_4$$
 (6)

Ocorre ainda, entre outras, a reacção da cal com o Fósforo (Metcalf e Eddy, 2003), formando-se um precipitado de hidroxipatita, como mostra a reacção (7)

10 Ca²⁺ +6 PO₄³⁻ + 2 OH⁻
$$\rightarrow$$
 Ca₁₀ (PO₄)₆ (OH)₂ (7)


A remoção de SST, verifica-se pela incorporação dos mesmos no precipitado e o seu arraste durante o processo de precipitação (Metcalf e Eddy, 2003).

4.2.1. ESTUDO DO PH DE PRECIPITAÇÃO

Em reações de precipitação química o pH de reação é um dos parâmetros fundamentais. Com a finalidade de obter o pH ótimo de trabalho foram aplicados pH, à água dos afluentes efluentes, na gama de 9,5 a 12, através da adição de diferentes volumes de solução de cal de 200g/L. Para cada amostra estudou-se o volume de cal necessário à obtenção do pH desejado, a condutividade, o CQO e a Abs a 254 e 410 nm.

4.2.1.1. Estudo da quantidade de reagente

Para a obtenção de cada valor de pH foi registado o volume de solução de cal a 200g/L gasto. Os resultados encontram-se resumidos na Figura 7.

Figura 7 - Volume de solução de cal (ml) 200g/L, adicionada à AR (bruta e tratada) para atingir o pH pretendido.

Pode verificar-se que o obtenção de pH acima de 11, faz aumentar grandemente a quantidade de reagente para se atingir o pH desejado. Verifica-se ainda que para o mesmo pH, a quantidade de cal é menor para as amostras tratadas. Por exemplo a amostra FB necessita de 10 ml de solução para atingir um pH de 11,5 e a amostra FT, necessita de aproximadamente 7,5 ml para atingir o mesmo pH. Estas diferenças poderão dever-se à alcalinidade da água, uma vez que as concentrações de fósforo são muito semelhantes na água à entrada e saída da ETAR. Renou *et al.*, 2009, obteve necessidades médias de reagentes semelhantes para três lixiviados brutos de aterro sanitário, quando os submeteu a tratamento por precipitação química com cal. Também as águas residuais da Indústrias de Queijo, quando submetidas a precipitação química básica apresentam uma necessidade de cal semelhante para se atingir o pH de precipitação máximo (Rivas et al., 2011).

4.2.1.2. Estudo do efeito do pH de reação na condutividade elétrica (CE)

Após atingir o pH desejado foi medida e registada a condutividade de cada amostra nos diferentes pH. Os resultados obtidos encontram-se resumidos na figura 8.

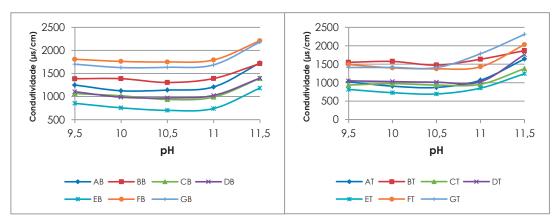


Figura 8 - Resultados da condutividade (μs/cm) em função dos valores de pH das águas em estudo.

Como se pode observar, as condutividades mínimas registam-se para valores de 10,5 para as todas as amostras. Estes valores mínimos de condutividade correspondem à máxima precipitação de carbonato de cálcio e magnésio existentes na água.

Se observarmos um gráfico de solubilidade de CaCO₃ em água, verifica-se que esta substância apresenta a condutividade mínima para valores de pH entre 10,5 e 11,0 (Carvalho, 2011).

4.2.1.3. Estudo do efeito do pH na Absorvância a 410 nm

Os compostos com cor absorvem a este comprimento de onda. A redução deste parâmetro está diretamente relacionado com os compostos de cor. A Figura 9 demonstra os resultados obtidos.

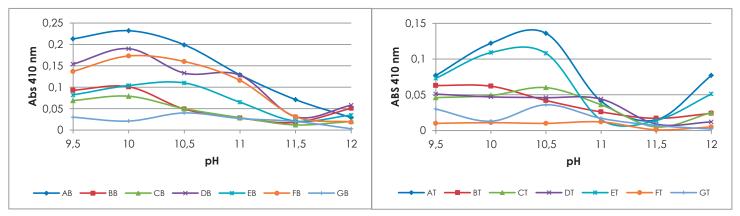


Figura 9 - Estudo da remoção da Abs 410 nm em função pH.

Como se pode verificar, registou-se um máximo de remoção de Absorvância a 410 nm para um pH de 11,5, quer para as amostras brutas quer tratadas. Este valor poderá estar relacionado com a obtenção de um máximo de precipitado e consequentemente um máximo de remoção de matéria em suspensão e até alguma matéria orgânica dissolvida.

4.2.1.4. Estudo do efeito do pH na Absorvância a 254 nm

Os resultados do estudo do efeito do pH de reação sobre os valores de absorvância a 254 nm, encontram-se resumidos nos gráficos da figura 5.

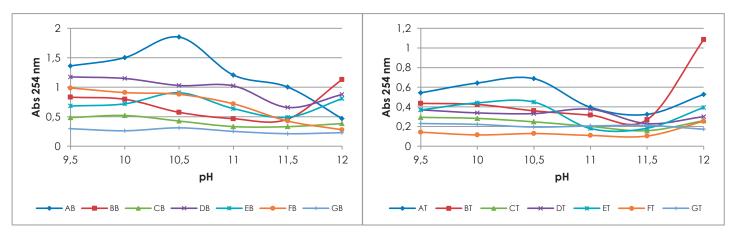


Figura 10 - Estudo da remoção da Abs 254 nm em função pH.

Os resultados obtidos permitem concluir que o pH de 11,5 é que permite obter valores mais baixos de Abs a 254 nm, ou seja é o pH para o qual se consegue eliminar mais quantidade de compostos aromáticos e com duplas ligações.

4.2.1.5. **CQO**

Os resultados do estudo do efeito do pH de reação sobre os valores de CQO encontramse resumidos nos gráficos da figura 11.

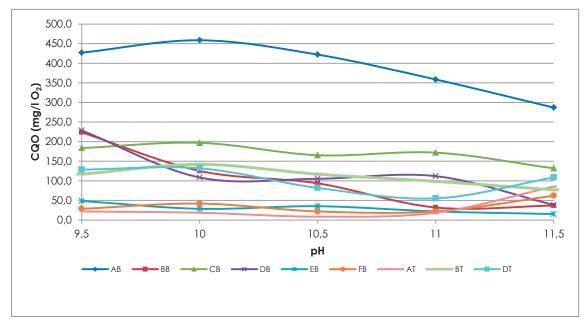


Figura 11 – Estudo da remoção de CQO em função do pH.

Os valores de CQO, apresentam um abaixamento considerável a partir de valores de pH de 11. Estes resultados poderão ser explicados pela maior formação de carbonato de cálcio e consequentemente maior arraste de matéria em suspensão das amostras, tal como ocorreu na remoção dos compostos responsáveis pela cor, Abs 410 nm e pelas ligações duplas e anéis aromáticos, Abs 254 nm.

4.2.1.6. Escolha do pH de trabalho

Após a análise dos resultados da quantidade de solução gasta, condutividade, Abs 254nm e Abs 410nm e CQO, foi determinado qual o valor do pH em que a maioria das águas residuais apresentava melhores percentagens de remoção.

Assim, foi escolhido o pH de 11,5 uma vez que no conjunto apresentava melhores resultados de remoção de matéria orgânica (condutividade, CQO, Abs a 254nm e 410nm).

4.3. ESTUDO DA NEUTRALIZAÇÃO NATURAL DA ÁGUA PRÉ – TRATADA POR PRECIPITAÇÃO QUÍMICA COM CA(OH)₂

Após precipitação química a água apresenta um pH aproximadamente de 11,5. Para a sua posterior reutilização será necessário um abaixamento de pH. Tradicionalmente o abaixamento de pH é realizado através da adição de ácidos, normalmente o sulfúrico e o clorídrico (Pita, 2002).

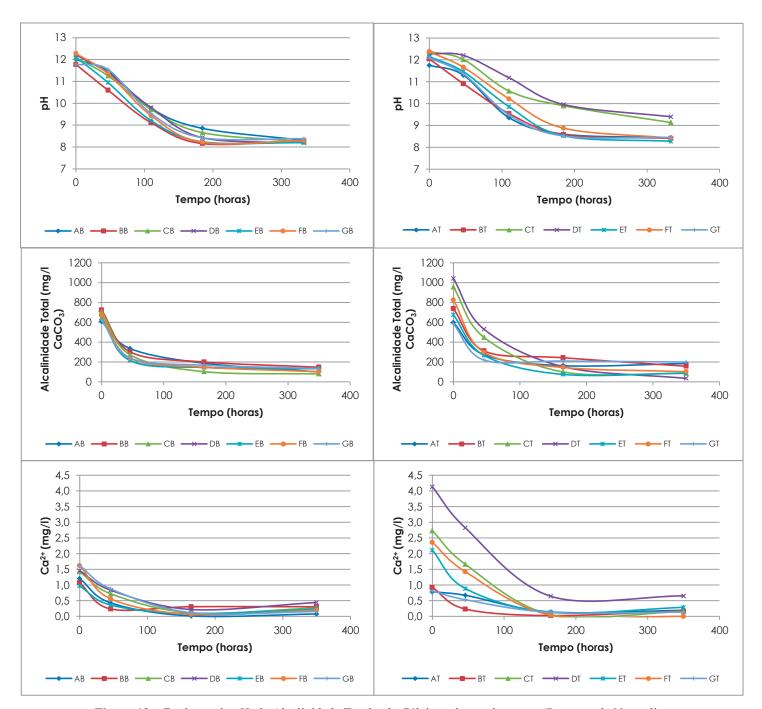
O efluente resultante da precipitação química básica contém elevadas concentrações de carbonato e hidróxido, em solução, que por reação química com o CO₂ do ar poderá ser removido conduzindo à obtenção de um precipitado de cor branca, essencialmente de carbonato de cálcio e magnésio, como mostram as equações 7 a 10. As equações 11 e 12 mostram que estes precipitados podem voltar a redissolver o precipitado formado.

$$CO_2 (ar) + OH^- \iff HCO_3^- + H_2O$$
 (7)

$$HCO_3^- + OH^- \iff CO_3^{2-} + H_2O$$
 (8)

$$CO_3^{2-} + Ca^{2+} \iff \downarrow CaCO_3, \tag{9}$$

$$CO_3^{2-} + Mg^{2+} \iff \downarrow MgCO_3, \tag{10}$$


$$CaCO_3 + CO_2 + H_2O \iff Ca^{2+} + 2HCO_3^{-1}$$
(11)

$$MgCO_3 + CO_2 + H_2O \iff Mg^{2+} + 2HCO_3^{-}$$
 (12)

Este processo poderá permitir que a água residual após tratamento possa sofrer uma neutralização natural, sem necessidade de aplicação de reagentes, se armazenada e exposta diretamente ao ar.

4.3.1. ESTUDO DA NEUTRALIZAÇÃO NATURAL DO EFLUENTE AO LONGO DO TEMPO

Os gráficos da Figura 12 apresentam a variação de pH, alcalinidade e Ca²⁺, quer para as mostras relativas ao afluente às ETAR, águas brutas, quer para as amostres efluentes da ETAR, águas tratadas, após aplicação de precipitação química a pH otimizado.

Figura 12 – Evolução do pH, da Alcalinidade Total e do Cálcio ao longo do tempo (Processo de Neutralização natural).

De acordo com os gráficos apresentados, as águas <u>tratadas das ETAR</u> apresentam maior concentração de Ca²⁺, este facto poderá dever-se à existência de menor concentração de iões HCO₃⁻ em solução e por conseguinte ao menor consumo de reagente durante a precipitação química, de acordo com as reações químicas (1), (2) e (5). Por outro lado, o pH parece ir diminuindo bruscamente até que exista cálcio em solução, verificando-se igual comportamento para ambas as águas, Brutas e Tratadas das ETAR. Verifica-se também que ao fim de mais de 900 horas o pH ainda se mantém nos mesmos valores, demonstrando a estabilidade da água. Também as águas à <u>saída da ETAR</u> apresentam uma maior alcalinidade no início da reação de neutralização natural, relativamente às águas à <u>entrada da ETAR</u>. Parece que este facto vem complementar o comportamento <u>das mesmas em relação ao cálcio, pois ficaram também mais carbonatos em solução, uma vez que não haveria alcalinidade suficiente para reagir com o Ca²⁺.</u>

Com o sentido de esclarecer melhor o comportamento da água durante a neutralização natural, nos gráficos da figura 13, mostra-se a variação da alcalinidade à Fenolfetaleína e Alaranjado de metilo ao longo do tempo.

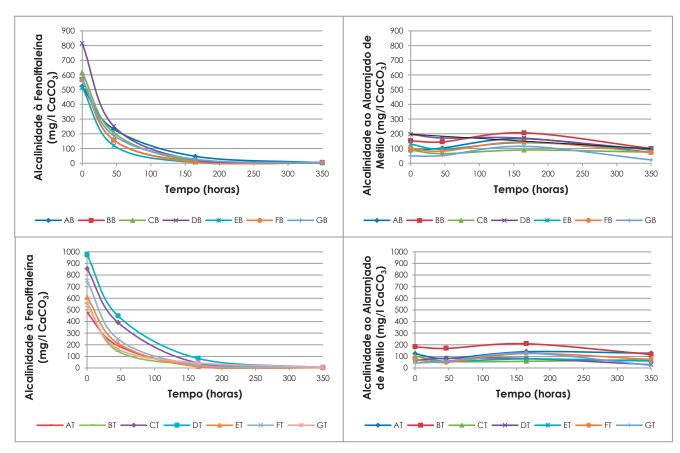


Figura 13 - Alcalinidade à Fenolftaleína Vs Alcalinidade ao Alaranjado de Metilo.

A alcalinidade à fenolftaleína representa apenas o teor de hidróxidos e/ou carbonatos da amostra, expresso em termos de CaCO₃. Enquanto a alcalinidade total representa o teor de hidróxidos, carbonatos e bicarbonatos da amostra, expressa em termos de CaCO₃. De acordo com os valores obtidos e como se pode ver na Figuras 13, ao longo do tempo a Alcalinidade à Fenolftaleína tem tendência a diminuir, ou seja, diminui a concentração de Hidróxidos e Carbonatos, por reação com a solução de cal, enquanto que a concentração de Bicarbonatos mantém-se mais ou menos constante ao longo do tempo, situação que coincide com o abaixamento do pH e do Cálcio. Este facto confirma que o processo seguiu as reações acima, (7) a (9), apresentadas em que os e os hidróxidos reagem com o CO₂ formando-se os carbonatos que reagem com o Ca²⁺ em solução e formam um precipitado de carbonato de cálcio. O precipitado era visível no fundo do recipiente.

4.3.2. ESTUDO DA VARIAÇÃO DA CONDUTIVIDADE AO LONGO DO TEMPO

Os gráficos da Figura 14 mostram a variação da condutividade ao longo do tempo nas reações de neutralização natural.

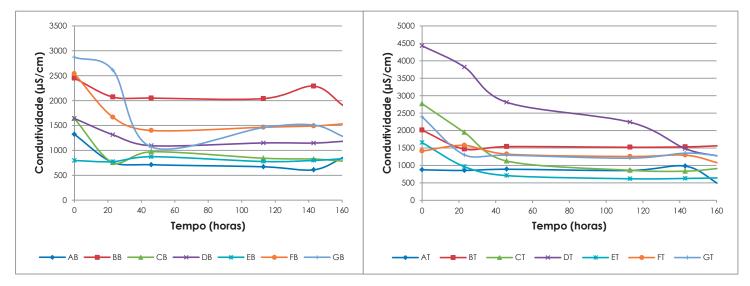


Figura 14 – Evolução da Condutividade ao longo do tempo.

Para o estudo da evolução da Condutividade, apenas se utilizaram os resultados obtidos no 1º ensaio, devido a problemas na sonda de medição. No entanto e de acordo com os gráficos apresentados, pode-se verificar, principalmente nas águas residuais efluentes às ETAR, um abaixamento da condutividade ao longo do tempo, que estará diretamente relacionado com a precipitação dos iões cálcio que existiam em solução.

4.4. DECANTAÇÃO DE LAMAS APÓS A ADIÇÃO DE SOLUÇÃO DE CA(OH)₂ ÀS AMOSTRAS DE ÁGUA RESIDUAL

O processo de sedimentação de lamas dos ensaios, decorreu segundo o esquema da Figura 15, que corresponde a uma sedimentação por camadas, sedimentação tipo III.

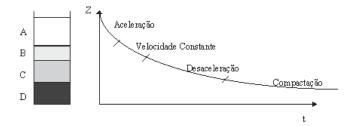
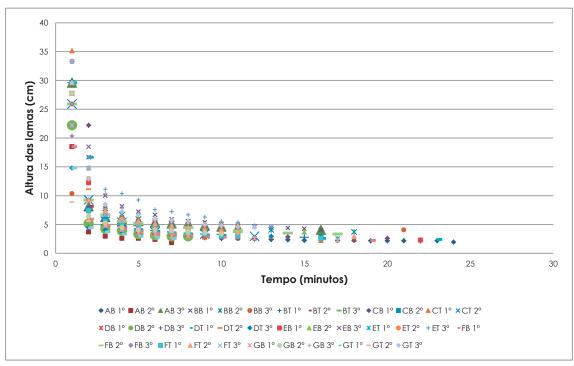
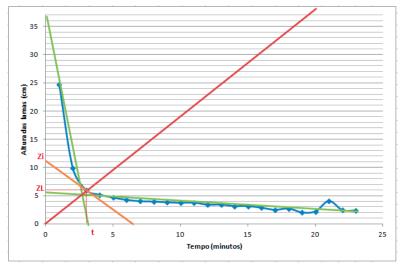



Figura 15 – Processo de sedimentação de lamas.

Na figura seguinte demonstram-se os resultados dos ensaios de decantação de lamas realizados nas provetas de 1000ml correspondente a 37 cm, para as 3 amostragens realizadas a cada água.

Figura 16 – Resultado da decantação de lamas para os 3 ensaios realizados às águas residuais e Velocidade de decantação de lamas (média de todos os valores obtidos).

De acordo com os gráficos obtidos, a percentagem de lamas formadas ao fim de 20 minutos é < a 10% do volume total.


Segundo os resultados apresentados para 1 m³ de água residual tratada, com características semelhantes às águas residuais estudadas e utilizando o processo de tratamento por precipitação química e neutralização natural, formar-se-iam cerca de 65 L de lamas á saída do decantador. Posteriormente estas lamas terão ainda que sofrer processos de secagem, por exemplo em filtros de areia, semelhantemente ao observado por Prazerers *et al*, 2012, para lamas obtidas em condições similares para águas residuais da Indústria de Queijo.

4.4.1. CÁLCULO DE VELOCIDADE DE DECANTAÇÃO DAS LAMAS

Durante os ensaios de decantação foi medida a altura dos sólidos suspensos totais ao longo do tempo, obtendo-se o gráfico da Figura 17.

As lamas produzidas apresentam uma excelente sedimentabilidade, num tempo muito curto.

A partir do Método de Talmadge e Fitch, pode calcular-se a velocidade de sedimentação traçando uma tangente à curva de sedimentação na zona de clarificação e outra na zona de compactação. A interseção das duas retas dá-nos a velocidade de sedimentação média.

Figura 17 – Representação gráfica utilizada para o cálculo da velocidade de decantação das lamas, a partir da média obtida de todos os ensaios realizados (segundo o Método de Talmadge e Fitch).

Assim, obtém-se a velocidade de sedimentação para a sedimentação do precipitado formado durante o processo de precipitação química, através da equação (13).

$$vL = (zi-zL)/t$$
 (13)
 $VL = (11-6)/3 = 1,67 \text{ cm/min}$

O valor obtido permite-nos concluir que a velocidade de sedimentação é muito elevada. Este valor pode assemelhar-se com os valores típicos de sedimentação de lamas em decantadores secundários com concentração inicial de sólidos suspensos totais de 589 mg/L- 0,019 m/min. (Ramalho, 1996).

4.5. AVALIAÇÃO DA QUALIDADE FINAL DA ÁGUA RESIDUAL APÓS A APLICAÇÃO DO TRATAMENTO POR PRECIPITAÇÃO QUÍMICA E NEUTRALIZAÇÃO NATURAL

4.5.1. CARACTERIZAÇÃO FÍSICO-QUÍMICA DA ÁGUA APÓS NEUTRALIZAÇÃO NATURAL

A Tabela 7 resume as principais características físico-químicas das águas tratadas por precipitação química básica e após o processo de neutralização natural.

Como se pode observar as águas apresentam pH próximo de 8, não apresentam contaminação microbiológica relativa a coliformes totais e encontra-se isenta ou com uma baixíssima concentração de Cádmio, Ferro e Manganês.

A água apresenta também ausência de cheiro e cor, tendo um aspeto cristalino e transparente.

	pН	SST (mg/l)	CBO ₅ (mg O ₂ /l)	CQO (mg O ₂ /l)	Fósforo Total (mg/l P)	Cálcio* (mg/l)	Cd (mg/l)	Fe (mg/l)	Mn (mg/l)	Coliformes Totais (ufc/ml)	O ₂ dissolvido (mg/l O ₂)	N Kjedhal (mg/l)	N Amoniacal (mg/l)
AB	8,65	4	22	112	0,034	0,03	0,004	< 0,100	< 0,025	0	5,43	7,8	5,5
AT	8,41	25	20	85	0,047	0,03	< 0,025	0,002	< 0,025	0	2,28	3,0	1,3
ВВ	8,45	49	38	181	0,039	0,31	0,015	< 0,100	< 0,025	0	1,12	8,7	7,7
ВТ	8,65	23	57	203	0,042	0,04	< 0,025	< 0,100	< 0,025	0	0,51	4,5	3,2
СВ	8,34	25	14	66	0,087	0,20	< 0,025	< 0,100	< 0,025	0	2,33	7,7	4,7
СТ	8,33	50	20	38	0,054	0,41	< 0,025	< 0,100	< 0,025	0	3,96	2,4	0,3
DB	8,17	22	48	180	0,056	0,33	< 0,025	< 0,100	< 0,025	0	1,17	11,8	8,2
DT	7,93	28	42	88	0,029	0,98	< 0,025	< 0,100	< 0,025	0	2,33	3,6	0,8
ЕВ	8,4	46	67	78	0,050	0,14	< 0,025	< 0,100	< 0,025	0	1,83	6,7	3,9
ET	8,04	39	18	45	0,037	0,22	< 0,025	< 0,100	< 0,025	0	1,98	3,4	1,0
FB	8,3	33	28	79	0,045	0,17	< 0,025	< 0,100	< 0,025	0	1,67	3,8	1,9
FT	8,4	26	13	46	0,026	0,15	< 0,025	< 0,100	< 0,025	0	2,49	2,0	0,8
GB	8,68	24	18	42	0,066	0,34	< 0,025	< 0,100	< 0,025	0	1,98	4,0	2,3
GT	8,76	26	13	40	0,034	0,22	< 0,025	< 0,100	< 0,025	0	2,08	2,4	8,9

Tabela 7 – Caraterização físico-química das águas após neutralização natural.

^{*}Cálcio determinado através do método descrito em 3.3.10. às amostras de água após a neutralização natural.

4.5.2. AVALIAÇÃO DA EFICÁCIA DO TRATAMENTO E EFICÁCIA DE REMOÇÃO DOS PARÂMETROS

Na tabela 8 e 9, apresentam-se os resultados finais e a avaliação da eficácia da aplicação do tratamento, para as amostras relativas ao efluente e afluente às ETAR, respetivamente.

Tabela 8 – Avaliação da eficiência da Precipitação Química Básica dos resultados obtidos antes e após a aplicação do tratamento para as águas de entrada.

		A	B	ВВ		СВ		DB		EB		FB		GB	
	VP*	Inicial	Final												
pН	6 – 9	8,06	8,65	8	8,45	7,72	8,34	7,98	8,17	8,1	8,4	7,7	8,3	7,7	8,68
SST (mg/l)	60	88	4	135,2	49	110,96	25	219,6	22	144	46	78	33	50,4	24
CBO5 (mg O ₂ /l)	25	283	22	345	38	233,3	14	374	48	352	67	271,6	28	130	18
CQO (mg O ₂ /l)	125	428,8	111,6	538,2	180,5	407,1	65,9	710,4	179,8	590	77,9	377,4	79,4	209,6	42,4
Fósforo Total (mg/l P)	2	8,2	0,034	12,04	0,039	9,19	0,087	10,8	0,056	8,1	0,05	6,78	0,045	9,9	0,066
CBO5/CQO	-	0,66	0,20	0,64	0,21	0,57	0,21	0,53	0,27	0,60	0,86	0,72	0,35	0,62	0,42

Tabela 9 - Comparação dos resultados obtidos antes e após a aplicação do tratamento para as águas de saída.

		AT		ВТ		СТ		DT		ET		FT		GT	
	VP*	Inicial	Final												
рН	6 – 9	7,74	8,41	7,5	8,65	7,44	8,33	7	7,93	7,78	8,04	7,74	8,4	7,72	8,76
SST (mg/l)	60	48,6	25	92,8	23	68,99	50	64	28	78,4	39	36,4	26	51,2	26
CBO ₅ (mg O ₂ /l)	25	65	20	281,6	57	267,7	20	138	42	118,2	18	77,2	13	94,2	13
CQO (mg O ₂ /l)	125	152,8	85,1	413,4	202,8	385,6	37,56	226,8	88,3	208,6	45,3	108,6	45,7	143,2	39,8
Fósforo Total (mg/l P)	2	5,2	0,05	9,96	0,042	5,6	0,054	8,2	0,03	5,3	0,04	6,2	0,03	8,36	0,03
CBO5/CQO	-	0,43	0,24	0,68	0,28	0,69	0,53	0,61	0,48	0,57	0,40	0,71	0,28	0,66	0,33

^{*} Valores paramétricos na descarga de águas residuais, estipulados no Decreto – Lei nº 152/97 de 19 de Junho.

Resultados antes da aplicação do tratamento

Resultados acima do VP.

Resultados após aplicação do tratamento

Resultados acima do VP.

Resultados abaixo do VP.

Não foi analisado o parâmetro Azoto Total, devido à ausência de resultados.

Após a análise das Tabelas 9 e 10, verifica-se que nem todos os resultados cumprem os VP de descarga de águas residuais estabelecidos na legislação, mas aproximam-se bastante deste valor.

Ainda assim, verifica-se uma melhoria significativa em relação aos resultados antes da aplicação do tratamento, especialmente para as águas de entrada, demonstrando que a aplicação do tratamento por precipitação química com solução de Ca(OH)₂ e neutralização natural apresenta melhores resultados do que os tratamentos atualmente instalados nas ETAR em estudo.

Pode verificar-se que no final do tratamento de precipitação química, algumas das amostras apresentam ainda índice de biodegradabilidade aproximadamente de 0,5, ou seja, as águas ainda apresentam possibilidade de afinação por processos biológicos.

Inicialmente apenas 27% dos parâmetros cumpriam os valores de descarga estabelecidos na legislação. Após a aplicação do tratamento em estudo 87% dos parâmetros encontram-se dentro dos valores estabelecidos.

As ETAR onde se conseguiu obter melhores resultados, foram a E e F, onde apenas um parâmetro se encontrava ligeiramente acima do VLE e a A, C e G onde todos os parâmetros cumprem os VP, coincidindo com aglomerados populações maiores.

As ETAR B e D foram as que apresentaram mais incumprimentos dos VLE, sendo também as que apresentam concentrações mais elevadas de CBO₅ e CQO. Sendo estas as ETAR que recebem água das populações mais pequenas, 188 e 405 habitantes respetivamente, este facto poderá estar relacionado com a presença de alguma pequena indústria, que contribui para o aumento da carga orgânica.

Na Figura 18 apresenta-se a percentagem de remoção para os vários parâmetros monitorizados em virtude da aplicação da precipitação química básica seguida de neutralização natural.

Tabela 10 - Percentagem de remoção de cada parâmetro para as águas residuais em estudo.

	$CBO_5 $ (mg O_2/l)	CQO (mg O_2/I)	SST (mg/l)	P Total (mg/l P)
Percentagem mínima de redução em relação à carga afluente (DL 152/97)	70 - 90	75	70	80
AB	92	74	95	99,6
AT	69	44	49	99,1
BB	89	66	64	99,7
BT	80	51	75	99,6
СВ	94	84	77	99,1
CT	93	90	28	99,0
DB	87	75	90	99,5
DT	70	61	56	99,6
EB	81	87	68	99,4
ET	85	78	50	99,3
FB	90	79	58	99,3
FT	83	58	29	99,6
GB	86	80	52	99,3
GT	86	72	49	99,6

De acordo com os resultados obtidos e apresentados na Tabela 10, pode-se verificar que a percentagem de remoção fósforo total cumpre na totalidade as percentagens mínimas de redução estabelecidas na legislação. Nos resultados da CBO₅, apenas a amostra AT está abaixo da percentagem mínima mas com uma diferença de apenas 1%.

A CQO e os SST foram os parâmetros onde foi mais difícil cumprir a percentagem mínima de redução estabelecida, sendo que 7 das amostras têm % de remoção inferior a 75% para a CQO e 10 das amostras têm % de remoção inferiores a 70% para os SST.

Rivas *et al.* (2004) obtiveram cerca de 35% e 55% de remoção de Abs a 410 nm e Abs a 254 nm respetivamente, quando aplicaram PQ ácida a lixiviados estabilizados de aterro sanitário. Também Rivas *et al.* (2010) obtiveram % de remoção de 100% e 90% dos mesmos parâmetros quando aplicaram coagulação / floculação com 250 mg/l de Sulfato de Ferro a águas residuais da indústria do queijo.

A % de remoção da Abs a 410 nm nas amostras foi em média de 86%. Estando este parâmetro diretamente relacionado com a cor das amostras, assim se confirma a

clarificação das AR tratadas no final da aplicação do tratamento, apresentando-se transparente.

A % de remoção da Abs a 254 nm foi em média de 67%, assim sendo o tratamento por PQ consegue eliminar esta quantidade de compostos aromáticos e com duplas ligações.

Verifica-se ainda que as águas de saída apresentam maior percentagem de remoção relativamente às águas de entrada da ETAR.

Pode-se ainda verificar que o tratamento foi mais eficaz quando aplicado às águas residuais brutas (antes da entrada na ETAR), do que às águas residuais já tratadas na ETAR, assim sendo, o tratamento com recurso a precipitação química e neutralização natural apresenta-se como alternativo ao tratamento instalado em cada uma das ETAR.

4.6. AVALIAÇÃO DA POSSIBILIDADE DE REUTILIZAÇÃO DAS ÁGUAS RESIDUAIS TRATADAS

As exigências legais relativamente aos parâmetros de qualidade a que devem obedecer as águas residuais para reutilização variam em função da aplicação que lhes for dada. Se a reutilização for suscetível de afetar as características de águas subterrâneas ou superficiais, como é o caso da rega agrícola e paisagística, da recarga de aquíferos, de determinados usos ambientais (conservação de *habitats*) e recreativos (alimentação de lagos para a pesca e os desportos náuticos), as águas residuais devem ter um nível de tratamento que garanta o respeito dos padrões de qualidade estabelecidos para tais águas em função dos usos a que estão destinadas. Nesse sentido, o Decreto-Lei n.º 236/98 constitui uma referência legal importante nos sistemas de reutilização de águas tratadas sob este aspeto, pois estipula os padrões de qualidade da água para diversas finalidades: águas doces superficiais e águas subterrâneas destinadas à produção de água para consumo humano, águas doces superficiais para fins piscícolas, águas balneares e águas de rega.

Quando não exista legislação diretamente aplicável, os parâmetros de qualidade, obrigações de monitorização e reporte serão definidos caso a caso pela autoridade licenciadora. Sempre que a reutilização seja suscetível de ter impactos na saúde pública é importante consultar e reportar os resultados do controlo da qualidade da água às

autoridades de saúde (ainda que esta não seja a entidade responsável pelo licenciamento). Os requisitos de qualidade definidos nas normas e recomendações descritas na Tabela do Anexo A, ainda que sem valor jurídico, podem constituir um importante auxílio no preenchimento das lacunas da lei (Marecos do Monte e Albuquerque, 2010).

4.6.1. AVALIAÇÃO DA POSSIBILIDADE DE REUTILIZAÇÃO DA ÁGUA RESIDUAL TRATADA PARA REGA AGRÍCOLA E PAISAGÍSTICA

Para a avaliação da possibilidade de reutilização das AR tratadas para rega agrícola e paisagística, teve-se como base o estabelecido no Decreto-Lei nº 236/98 de 1 de Agosto, para os parâmetros analisados.

Tabela 11 – Resultados obtidos para as amostras de águas tratadas e sua avaliação segundo os critérios para utilização em rega.

	CE (dS/m)	SDT (mg/l)	SAR*	SST (mg/l)	рН	Cd (mg/l)	Fe (mg/l)	Mn (mg/l)	Coliformes Totais (ufc/ml)
VMR	1	640	8	60	6,5 – 8,4	0,01	5,0	0,20	0
VMA	-	-	-	-	4,5 - 9	0,05	-	10	-
AB	0,61	389,8	4,85	4	8,65	0,004	< 0,100	< 0,025	0
AT	0,98	627,8	6,45	25	8,41	< 0,025	0,002	< 0,025	0
BB	2,29	1465,6	10,83	49	8,45	0,015	< 0,100	< 0,025	0
BT	1,53	980,5	27,66	23	8,65	< 0,025	< 0,100	< 0,025	0
СВ	0,83	528,0	5,54	25	8,34	< 0,025	< 0,100	< 0,025	0
СТ	0,84	535,0	15,07	50	8,33	< 0,025	< 0,100	< 0,025	0
DB	1,15	734,1	6,46	22	8,17	< 0,025	< 0,100	< 0,025	0
DT	1,48	948,5	4,18	28	7,93	< 0,025	< 0,100	< 0,025	0
EB	0,80	510,7	3,47	46	8,4	< 0,025	< 0,1 00	< 0,025	0
ET	0,63	401,9	2,83	39	8,04	< 0,025	< 0,100	< 0,025	0
FB	1,49	953,6	72,36	33	8,3	< 0,025	< 0,100	< 0,025	0
FT	1,30	828,8	6,11	26	8,4	< 0,025	< 0,100	< 0,025	0
GB	1,51	965,1	8,82	24	8,68	< 0,025	< 0,100	< 0,025	0
GT	1,35		10,38	26	8,76	< 0,025	< 0,100	< 0,025	0

Resultados abaixo do VMR. Resultados acima do VMR.

*SAR calculada a partir das amostras após a aplicação do tratamento por Precipitação Química básica e antes da neutralização natural.

Analisando os resultados obtidos para os parâmetros apresentados na Tabela acima, verifica-se que pelo menos 5 amostras cumprem na totalidade os requisitos estabelecidos de acordo com o VMR para a reutilização das mesmas como água de rega.

Mais alguns parâmetros poderiam ser analisados, tendo em conta o tipo de rega a efetuar e a cultura. No entanto e seguindo a tipologia habitual das águas residuais urbanas, a maior parte dos parâmetros além dos aqui já analisados, seria vestigial (Metcalf e Eddy, 2003).

^{*}SDT calculados com base na CE, de acordo com o Anexo B.

4.6.2. RECARGA DE AQUÍFEROS

A inexistência de normas de qualidade da água para a recarga de aquíferos não constitui impedimento da implementação de projetos com esta finalidade: cada projeto de recarga de aquíferos por meio da reutilização de águas residuais tratadas deve ser objeto de estudos rigorosos e exaustivos, nas diversas vertentes, designadamente a hidrogeologia do local, a avaliação da qualidade da água a introduzir no aquífero, a avaliação dos impactes ambientais (Marecos do Monte e Albuquerque, 2010).

Tabela 12 - Resultados obtidos para as amostras de águas tratadas e sua avaliação segundo os critérios para utilização em recarga de aquíferos.

	CBO ₅ (mg/l O ₂)	SST (mg/l)	SDT (mg/l)	Azoto Kjeldahl (mg/l)	Azoto Amoniacal (mg/l)	Cd (mg/l)	Fe (mg/l)	Mn (mg/l)	Coliformes Totais (ufc/ml)
Critério de qualidade	20	5 - 35	NR	12*	12*	-	-	-	0
AB	22	4	389,8	7,8	5,5	0,004	< 0,100	< 0,025	0
AT	20	25	627,8	3,0	1,3	< 0,025	0,002	< 0,025	0
BB	38	49	1465,6	8,7	7,7	0,015	< 0,100	< 0,025	0
BT	57	23	980,5	4,5	3,2	< 0,025	< 0,100	< 0,025	0
СВ	14	25	528,0	7,7	4,7	< 0,025	< 0,100	< 0,025	0
СТ	20	50	535,0	2,4	0,3	< 0,025	< 0,100	< 0,025	0
DB	48	22	734,1	11,8	8,2	< 0,025	< 0,100	< 0,025	0
DT	42	28	948,5	3,6	0,8	< 0,025	< 0,100	< 0,025	0
EB	67	46	510,7	6,7	3,9	< 0,025	< 0,100	< 0,025	0
ET	18	39	401,9	3,4	1,0	< 0,025	< 0,100	< 0,025	0
FB	28	33	953,6	3,8	1,9	< 0,025	< 0,100	< 0,025	0
FT	13	26	828,8	2,0	0,8	< 0,025	< 0,100	< 0,025	0
GB	18	24	965,1	4,0	2,3	< 0,025	< 0,100	< 0,025	0
GT	13	26	865,9	2,4	8,9	< 0,025	< 0,100	< 0,025	0

NR – Não requerido

Resultados que cumprem o critério de qualidade.

Resultados que não cumprem o critério de qualidade.

Como se pode verificar na Tabela 12, as AR provenientes de 5 amostras (afluentes e efluentes) cumprem integralmente os parâmetros analisados. Os parâmetros responsáveis pelos incumprimentos das restantes amostras são a CBO₅ e os SST.

^{*} Requisitos de qualidade para recarga de aquíferos na Flórida (Marecos do Monte e Albuquerque, 2010).

4.6.3. UTILIZAÇÕES RECREATIVAS E AMBIENTAIS

A turvação, o teor de SST e de coliformes fecais são os parâmetros de qualidade mais relevantes no âmbito da reutilização de águas residuais tratadas para usos recreativos e ambientais. Para esta última utilização pode ainda ser interessante monitorizar a concentração de metais pesados, de compostos orgânicos residuais, pois tendem a acumular-se em níveis elevados nos tecidos de alguns membros da cadeia alimentar, como os peixes e as aves. O pH, o OD e os nutrientes também podem ser parâmetros de interesse relevante (Marecos do Monte e Albuquerque, 2010).

Tabela 13 - Resultados obtidos para as amostras de águas tratadas e sua avaliação segundo os critérios para utilizações recreativas e ambientais.

	CBO ₅ (mg/l O ₂)	SST (mg/l)	Azoto Amoniacal (mg/l N – NH ₄ ⁺)	Fósforo (mg/l P)	Cd (mg/l)	Fe (mg/l)	Mn (mg/l)	Coliformes Totais (ufc/ml)		
Critério de qualidade	20	20	2	3	-	-	-	0		
AB	22	4	5,5	0,034	0,004	< 0,100	< 0,025	0		
AT	20	25	1,3	0,047	< 0,025	0,002	< 0,025	0		
ВВ	38	49	7,7	0,039	0,015	< 0,100	< 0,025	0		
BT	57	23	3,2	0,042	< 0,025	< 0,100	< 0,025	0		
СВ	14	25	4,7	0,087	< 0,025	< 0,100	< 0,025	0		
СТ	20	50	0,3	0,054	< 0,025	< 0,100	< 0,025	0		
DB	48	22	8,2	0,056	< 0,025	< 0,100	< 0,025	0		
DT	42	28	0,8	0,029	< 0,025	< 0,100	< 0,025	0		
EB	67	46	3,9	0,050	< 0,025	< 0,100	< 0,025	0		
ET	18	39	1,0	0,037	< 0,025	< 0,100	< 0,025	0		
FB	28	33	1,9	0,045	< 0,025	< 0,100	< 0,025	0		
FT	13	26	0,8	0,026	< 0,025	< 0,100	< 0,025	0		
GB	18	24	2,3	0,066	< 0,025	< 0,100	< 0,025	0		
GT	13	26	8,9	0,034	< 0,025	< 0,100	< 0,025	0		
F	Resultados que cum	prem o critério	de qualidade.	Resultados que não cumprem o critério de qualidade.						

De acordo com os resultados obtidos existe a possibilidade de algumas das AR poderem ser utilizadas para usos recreativos e ambientais, embora para salvaguarda da saúde pública, seja aconselhado a presença de Cloro Residual Livre e Combinado na água, sendo necessário realizar a desinfeção da mesma antes da utilização para este fim.

4.6.4. UTILIZAÇÕES URBANAS NÃO-POTÁVEIS

As normas ou critérios de qualidade para reutilização da água em usos urbanos não potáveis são muito escassas e, logicamente, foram desenvolvidas em países onde tais aplicações são mais abundantes. Por isso, a abordagem mais prática reside na especificação de valores máximos para os parâmetros de qualidade relevantes, consoante se trata de reutilização em usos urbanos com restrições ou sem restrições de acesso e contato humano (Marecos do Monte e Albuquerque, 2010).

Tabela 14 - Resultados obtidos para as amostras de águas tratadas e sua avaliação segundo os critérios para utilizações urbanas não - potáveis.

	Uso não 1	restrito	Use	o restrito	Coliformes		
	CBO ₅ (mg/l O ₂)	SST (mg/l)	CBO ₅ (mg/l O ₂)	SST (mg/l)	Totais (ufc/ml)	рН	Odor
Critério de qualidade	10	20	45	45	0	6,5 – 8,4	ND
AB	22	4	22	4	0	4,5 - 9	ND
AT	20	25	20	25	0	8,65	ND
BB	38	49	38	49	0	8,41	ND
BT	57	23	57	23	0	8,45	ND
СВ	14	25	14	25	0	8,65	ND
СТ	20	50	20	50	0	8,34	ND
DB	48	22	48	22	0	8,33	ND
DT	42	28	42	28	0	8,17	ND
EB	67	46	67	46	0	7,93	ND
ET	18	39	18	39	0	8,4	ND
FB	28	33	28	33	0	8,04	ND
FT	13	26	13	26	0	8,3	ND
GB	18	24	18	24	0	8,4	ND
GT	13	26	13	26	0	8,68	ND

ND – Não detetável

Resultados que cumprem o critério de qualidade.

Resultados que não cumprem o critério de qualidade.

Das amostras analisadas, 9 apresentam potencialidade para reutilização em usos urbanos não potáveis de uso restrito.

Nas aplicações de uso urbano com restrição de acesso e de contacto humano incluem-se: a rega de espaços verdes de acesso condicionado, lavagem de veículos e autoclismos.

Tal como no caso anterior, nas recomendações inclui-se que existe uma concentração de Cloro Residual Livre e combinado, e o tratamento teria de ser complementado com a desinfeção.

5. CONSIDERAÇÕS FINAIS

Este trabalho vem demonstrar que existem alternativas de tratamento aos atuais sistemas de tratamento de águas residuais por processos biológicos, pois é possível obter remoções cerca de 100% para P e coliformes totais. Para o CBO₅,CQO e SST os resultados obtidos são um pouco mais baixos do que os observados nos processos biológicos, cerca de 70 % para o CQO, um pouco menos de 85% para o CBO e cerca de 60% para os SST. Já os resultados de remoção global de N total são bastante aceitáveis de cerca de 86%. De considerar ainda a remoção quase total de metais como o Fe, Mn e Cd. O tratamento aqui desenvolvido é um tratamento de baixo custo e fácil aplicação. Os resultados obtidos permitem abrir horizontes de aplicação desta tecnologia em locais de menor capacidade económica e tenológica e tendo em vista a sua reutilização.

Verificamos que as recomendações de qualidade exigida para a reutilização das águas para rega parece ser a solução mais viável, mas aparece a condutividade elétrica como um fator limitante. Deverá considerar-se que a maioria dos ensaios foi realizada a um pH acima do ótimo obtido o que leva à existência de maior quantidade de iões em solução. Acreditamos que se os processos de precipitação ocorrerem a um pH cerca de 11 ou 11,5 não aparecerá a condutividade como um fator limitante. A utilização desta água, isenta de microrganismos para fins urbanos restritos, como seja lavagem de ruas, carros de transporte de resíduos sólidos, parece também ser uma solução bastante promissora. A aplicação deste sistema de tratamento poderá ser efetuado num equipamento barato e de fácil aplicação, como mostra a Figura 19. Este equipamento já existente no mercado adapta-se a esta tecnologia e consiste num tanque de mistura que pode ser utilizado em Batch e onde é possível também efetuar a sedimentação, pois tem saída de sobrenadante e lamas. Após este tratamento, deverá existir uma lagoa de estabilização que terá o volume necessário para armazenar a água durante pelo menos 15 dias, para permitir obter a sua neutralização natural. Em sistemas de grande dimensão a neutralização poderá ser efetuada em linha, através de CO₂ artificial e assim evita-se a necessidade de armazenamento durante um período tão longo.

Se pensarmos na descarga desta água no meio hídrico, terá que ser ainda aplicado tratamentos de afinação para a remoção de matéria orgânica e nalguns caso de N. Verificou-se que algumas das amostras ainda apresentam biodegradabilidade, após precipitação química, o que nos abre ainda campo para afinação por processos biológicos até obtenção de valores de matéria orgânica compatíveis com a descarga no meio hídrico, nos restantes casos a aplicação de tratamentos químicos de oxidação seria a opção mais viável. Pequenos aglomerados, ou locais com espaço, poderão utilizar zonas húmidas artificiais para o efeito. Este estudo deixa ainda matéria para trabalhos futuros de afinação e do estudo das carências de desinfetante.

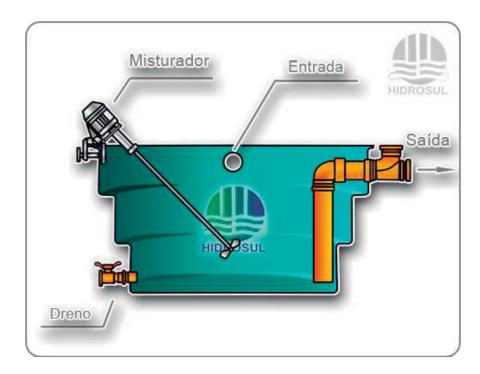


FIGURA 18 – Tanque de mistura (www.hidrosul.com.br).

As lamas resultantes do processo de Precipitação Química, podem apresentar potencialidades de reutilização, pois encontravam-se estabilizadas e apresentam-se ricas em matéria orgânica e fósforo, uma vez que se obtiveram remoções de fósforo muito elevadas.

BIBLIOGRAFIA

- Amorim, H. e Inocêncio, P. (2000). Sistemas de Fossas Sépticas e de Colectores Gravíticos de Pequeno Diâmetro. Trabalho Final de Curso, IST, Lisboa.
- **Butler, D. (1991).** A small-scale study of wastewater discharges from domestic appliances. *J. IWEM*.
- Carvalho, Maria de Fátima Nunes, (2011), Diapositivos da Disciplina de Tecnologias de Tratamento de Águas, Mestrado em Tecnologias do Ambiente, Escola Superior Agrária de Beja.
- Carvalho, F.; Prazeres, A.; Rivas, F.J. (2011). "Reciclagem de fósforo e matéria orgânica por precipitação química de águas residuais industriais para posterior valorização agrícola". VI Congresso Ibérico de Agroengenharia, Universidade de Évora, Setembro, Évora, Portugal
- Cole, J. H.: Torchia. S.F. (1998). *Defying Gravity*. Civil Engineering.
- Comissão Europeia (CE), (2002). A Directiva-Quadro da Água: algumas informações. Serviço das Publicações Oficiais das Comunidades Europeias, Luxemburgo.
- Crites, R. W. e Tchobanoglous, G. (1998). Small and Decentralized Wastewater Management Systems, McGraw-Hill, Nova Iorque.
- **Dias, S.P. (2000).** Sistemas Alternativos de Baixo Custo para Drenagem de Águas Residuais. Tese de Mestrado, IST, Lisboa..
- Edeline, F. (1983). La fosse septique: ses possibilites, ses limites et les solutions de remplacement, Tribune du Cebedeau. Cebedoc Editeur, Liège, Bélgica Vol. 36, N° 471.
- ERSAR (2011) Relatório Anual do Sector de Águas e Resíduos em Portugal (2010). Lisboa. Entidade Reguladora dos Serviços de Águas e Resíduos.
- Ferreira, José Gomes (2008): "Saneamento básico Proposta de análise do problema em Portugal 1970-2000". Actas do VI Congresso Ibérico sobre Gestão e Planeamento da Água, Vitoria-Gasteíz.
- Galvão, A. (2008) Comportamento Hidráulico e Ambiental de Zonas Húmidas Construídas para o Tratamento de Águas Residuais. Tese de Doutoramento, IST, Lisboa.

- Henze, M.P.; Harremoes, P.; Jansen, J. e Arvin, E. (1997). *Biological and Chemical processes*, 2^a Edição, Springer-Verlag berlin Heidelberg.
- IGAOT (2004), Avaliação do Desempenho Ambiental das Estações de Tratamento de Águas Residuais Urbanas em Portugal. Lisboa. Inspecção-Geral do Ambiente e do Ordenamento do Território.
- Instituto Superior Técnico (IST), (2008). Relatório de Execução Material: Projecto SPESSA - Sustentabilidade de pequenos sistemas de saneamento. IST, Lisboa.
- Inventário Nacional de Sistemas de Abastecimento de Água e de Águas
 Residuais (INSAAR), (2008). Relatório do Estado do Abastecimento de Água e
 Saneamento de Águas Residuais: Sistemas Públicos Urbanos Campanha
 INSAAR de 2006.
- International Water Association (IWA), (2000). Constructed Wetlands For Pollution Control: Processes, performance, projector e Operação- Scientific and Technical Report N°8. IWA Publishing, Londres.
- Jordão, E. e Pessoa, C. (2005). Tratamento de Esgotos Domésticos. 4ª edição,
 Segrac. Rio de Janeiro.
- Kadlec, R e Knight, R (1996). Treatment Wetlands. CRC Press, Boca Raton, Florida.
- Lingman, K.; Hutzler, N. e Boyle, W.C. (1974). Household wastewater characterization. *J. Envir. ASCE*, Vol.100 (EE1).
- Ministério do Ambiente, do Ordenamento do Território e do
 Desenvolvimento Regional (MAOTDR), (2007). Plano Estratégico de
 Abastecimento de Água e de Saneamento de Águas Residuais. MAOTDR,
 Lisboa.
- Mara, D. (1996). Low Cost Urban Sanitation. Inglaterra, Chichester: Jonh Wiley & Sons Ltd.
- Marecos do Monte e Albuquerque (2010). Série de Guias Técnicos, 14 –
 Reutilização de Águas Residuais. Instituto Superior de Engenharia de Lisboa,
 Entidade Reguladora dos Serviços de Águas e Resíduos.
- Matos, J. S. (2006). Ambiente e Saneamento Sistemas de Drenagem. IST Press, Lisboa.

- Matos, M. R.; Rodrigues, C e Albuquerque, A. (1995). Normalização técnica. Em *Gestão de sistemas de saneamento básico, Vol. 8.* Lisboa: LNEC, Direcção geral do Ambiente, ed Jaime Melo Baptista e Maria Rafaela Matos.
- Metcalf e Eddy (2003). Wastewater Engineering: Treatment and Reuse. 4^a
 Edição, McGraw-Hill.
- Monteiro, M.C.H. [et al.] (2000) Utilização sustentável de águas residuais e resíduos orgânicos. Castelo Branco
- Morais, A.Q. (1977). Depuração de Esgotos Domésticos dos Pequenos Aglomerados Populacionais e Habitações Isoladas. Lisboa, Ministério das Obras Públicas.
- Quintela, A. (2005). Hidráulica. Fundação Calouste Gulbenkian, 9^a Edição,
 Lisboa
- Ramalho, R.S. (1996) "Tratamiento de aguas residuales". Editorial Reverté, S.A.
- Richter, Carlos A.; Netto, José M. de Azevedo (1991). Tratamento de Água
 Tecnologia actualizada, 3ª reimpressão 2000, Brasil.
- Rivas, F. J., Beltrán, F. J., Carvalho, F., Acedo, B., Gimeno, O. "Stabilized leachates: Sequential coagulation-flocculation + chemical oxidation process".
 2004; J. Haz. Mat. Part B116: 95-102.
- **Rivas,** F. J., Carvalho, F., Prazeres, A. "Aerobic Biodegradation of Precoagulated Cheese Whey Wastewater". 2011. J. Agric. Food, 59, 2511-2517.
- Rivas, F. J., Carvalho, F., Prazeres, A, Beltrán, F. "Treatment of Cheese Whey Wastewater: Combined Coagulation-Floculation and aerobic Biodegradation".
 2010; J. Agric. Food, 58, 7871-7877.
- Salvato, J.A. (1992). Environmental Engineering and Sanitation, 4^a Edição,
 Wiley Interniscence Publishers, Nova Iorque.
- Sperling, M. (2002). Princípios do Tratamento Biológico de Águas Residuais.
 2ªEdição Ampliada, Vol.3, DESA-Universidade Federal de Minas Gerais, Belo Horizonte.
- Sousa, E.R. (1981). Aplicação da Lagunagem ao Tratamento de Águas Residuais Comunitárias. LNEC, Lisboa.

ANEXOS

ANEXO A

Critérios de qualidade recomendados para a reutilização de águas tratadas em Portugal (Marecos do Monte e Albuquerque, 2010).

	CBO ₅	SST	SDT	Azoto	Fósforo	Dureza	Alcalinidade	Outros	Fe	SiO ₂	Turvação	Coliformes fecais	Ovos de helmintas
Unidades		(m	g/L)		(mg/L P)	(mg/	L CaCO ₃)	(r	ng/L)		(UNT)	UFC/100mL	(nº/L)
Rega Agrícola e Paisagística								5					
Produtos hortícolas de consumo em cru					2 - 3			рН,Сеа.				10^{2}	
Espaços verdes de contato direto com o público								Al,As, Ba,Be, B, Cd,			10	200	
Produtos hortícolas de consumo após processamento, pastagens, vinha, pomares		20 - 60	640	50 até VL Como N - NO ₃				Pb, Cl, Co, Cu, Xr, Sn, F, Li, Mn, Mo, Ni, Se,	5			10 ³	1
Searas, culturas industriais, floresta e espaços verdes de acesso controlado								SO4=, V, Zn			NR	104	
Recarga de aquíferos	20	5 - 35	NR	10 como N - NO ₃							2	0 - 10 ³	
					Usos A	mbientais	e recreativos						
Uso ambiental	20	20		2 como N- NH ₄	3						2	ND - 75	ND
Uso recreativo restrito	30	30									2	ND - 800	ND
					Usos	urbanos n	ão potáveis						
Uso não restrito	10	20											
Lavagem de ruas	10	20									10	200	1
Lavagem de veículos	10	20									10	200	1
Combate a incêndios	10										10	200	1
Descarga de autocolismos	-	10									2	0 - 10	1
Uso restrito	45	45										ND	ND - 100

ND – Não Detetável

VL - Valor a definir caso a caso pela autoridade licenciadora

NR – Não Requerido

ANEXO B

CÁLCULO DOS PARÂMETROS WILCOX E SAR

O parâmetro crítico de águas residuais para reduzir ao mínimo os efeitos do ião de sódio é a quantidade de sódio presente em relação à concentração dos outros iões presentes.

Várias razões analíticas foram usadas para controlar estes efeitos. Um destes é o Wilcox, (Wilcox, 1948) proporção que é definida como:

$$W = \frac{Na}{Na + Mg + Ca + K}$$

O valor crítico para o rácio é de 0,8 Wilcox, onde as unidades são miliequivalentes por litro.

Outro parâmetro que é normalmente usada para determinar a quantidade de sódio em excesso de águas residuais é de adsorção de sódio é o rácio ou SAR (Ferguson, 1976). Este conceito baseia-se na teoria do equilíbrio e é definido como:

A **Razão de Adsorção de Sódio**, que se representa por RNa ou por SAR é a grandeza que traduz a relação e é determinada a partir dos valores das concentrações de sódio, cálcio e magnésio, segundo a fórmula seguinte, onde as concentrações dos iões Na⁺, Ca²⁺, Mg²⁺ são expressas em meq/L:

$$R_{Na} = \frac{[Na]}{\sqrt{\frac{[Ca] + [Mg]}{2}}}$$

Os resultados apresentados na tabela seguinte foram obtidos a partir da determinação dos parâmetros nas amostras após o tratamento por Precipitação Química Básica, mas antes do processo de neutralização natural.

	Ca (mg/l)	Ca (mEq/l)	Mg (mg/l)	Mg (mEq/l)	Na (mg/l)	Na (mEq/l)	K (mg/l)	K (mEq/l)	Wilcox	SAR
	133,1	6,655	()	()	177	8,85	32,4	1,62	0,52	4,85
AB	133,1	0,000	Ů	· ·	1,,	0,00	52,.	1,02	0,02	.,00
1110	71,84	3,592	0	0	173	8,65	11,2	0,56	0,68	6,45
AT	. ,-	- ,		-		-,	,	-,	.,	, ,
	23,96	1,198	1,534	0,0767	173	8,65	15,6	0,78	0,81	10,83
BB	ŕ	,		,		,				
	5,08	0,254	0,576	0,0288	208	10,4	19,6	0,98	0,89	27,66
BT										
	82,3	4,115	0	0	159	7,95	17,4	0,87	0,61	5,54
CB										
	3,874	0,1937	1,952	0,0976	115	5,75	8,7	0,435	0,89	15,07
CT										
	91,24	4,562	0	0	195	9,75	28	1,4	0,62	6,46
DB										
	156	7,8	0	0	165	8,25	23,6	1,18	0,48	4,18
DT										
	28,18	1,409	3,784	0,1892	62	3,1	9,8	0,49	0,60	3,47
EB									0.74	
	62,2	3,11	0	0	70,5	3,525	6,1	0,305	0,51	2,83
ET	2.24	0.162	0.424	0.0212	420	21.0	18	0.0	0.05	72.26
ED	3,24	0,162	0,424	0,0212	438	21,9	18	0,9	0,95	72,36
FB	57,86	2,893	0	0	147	7,35	5,2	0,26	0,70	6,11
FT	31,00	2,093	U	U	14/	7,55	3,2	0,20	0,70	0,11
1' 1	104,95	5,2475	0,098	0,0049	286	14,3	15,6	0,78	0,70	8,82
GB	10.,50	2,2173	0,070	3,5019	250	1,5	15,0	0,70	0,70	5,52
OD	76,38	3,819	0,037	0,00185	287	14,35	19,2	0,96	0,75	10,38
GT	,	-,	-,	-,		,	,-	-,	-,	,
O1		l	l		l		1		1	

Anexo C - Cálculo dos SDT

Uma avaliação completa da salinidade da água engloba a determinação da condutividade, dos SDT e dos iões atrás mencionados. Na prática corrente, utiliza-se quase exclusivamente a condutividade elétrica (Ce), pois além de poder ser avaliada por um teste bastante expedito, que não demora mais de 5 minutos por amostra, pode ser considerado numericamente equivalente ao teor de SDT [Pettygrove & Asano, 1985], com uma aproximação de ± 10%, de acordo com as equações (3.1) e (3.2) (Marecos:

Ce (dS/m) x 640 = SDT (mg/L) (3.1)
SDT (mg/L) x 1,56 x
$$10^{-3}$$
 = Ce (dS/m) (3.2)

Amostras	Condutividade (µS/cm)	Condutividade (dS/m)	SDT (mg/l)
AB	609	0,61	389,8
AT	981	0,98	627,8
BB	2290	2,29	1465,6
BT	1532	1,53	980,5
СВ	825	0,83	528,0
СТ	836	0,84	535,0
DB	1147	1,15	734,1
DT	1482	1,48	948,5
EB	798	0,80	510,7
ET	628	0,63	401,9
FB	1490	1,49	953,6
FT	1295	1,30	828,8
GB	1508	1,51	965,1
GT	1353	1,35	865,9

ANEXO D – RESULTADOS OBTIDOS DURANTE OS ENSAIOS

Valores iniciais das AR

Águas	pН	Sólidos suspensos (mg/l)	CBO5 (mg O ₂ /l)	CQO (mg O ₂ /l)	Azoto Total (mg/l N)	Fósforo Total (mg/l P)
AB	8,3	128	305	479	114,3	10,2
AB	8,2	78	190	329	64	5,8
AB	8,6	128	570	761	132	14
AB	8,1	46	170	292	63	7
AB	7,1	60	180	283	25	4
Média	8,06	88	283	428,8	79,66	8,2
AT	7,5	105	105	216	74,7	6
AT	8	50	80	188	53	8,1
AT	7,9	18	50	125	74	3
AT	7,8	14	40	63	51	2
AT	7,5	56	50	172	49	7
Média	7,74	48,6	65	152,8	60,34	5,22
BB	8,2	138	400	704	182	18,2
BB	8,2	110	390	583	111	11
BB	8	180	515	648	141	13
BB	8,2	66	60	152	44	2
BB	7,4	182	360	604	86	16
Média	8	135,2	345	538,2	112,8	12,04
ВТ	7,4	74	260	483	85,1	9,8
BT	7,9	90	150	170	66	11
BT	7,6	82	450	511	84	8
BT	7,4	100	248	379	59	8
BT	7,2	118	300	524	79	13
Média	7,5	92,8	281,6	413,4	74,62	9,96
СВ	8,2	84	100	281	69,9	9
СВ	8,4	88	205	376	67	10
СВ	7,3	172	280	441	36	4
Média	7,72	110,96	233,32	407,08	65,304	9,192
CT	7,5	8	55	106	57,7	4,8
CT	7,4	22	70	134	41	5
СТ	7,3	32	700	840	37	5
Média	7,444	68,992	267,664	385,616	47,4008	5,5984
DB	8,5	142	375	791	165,2	17
DB	8,5	82	305	527	128	12
DB	7,5	510	540	1082	145	12
DB	8,1	44	160	279	49	6
DB	7,3	320	490	873	95	7
Média	7,98	219,6	374	710,4	116,44	10,8
DT	7,1	30	30	92	5,5	5
DT	6,4	30	30	48	62	2
DT	6,9	180	355	501	65	13

DT 7,7 6 25 82 41 3 DT 6,9 74 250 411 119 18 Média 7 64 138 226,8 58,5 8; EB 7,9 122 340 736 61,2 6; EB 8,1 92 440 532 52 5 EB 8,6 190 300 507 117 16 EB 7,5 84 380 547 53 6 EB 8,4 232 300 628 88 13 Média 8,1 144 352 590 74,24 8, ET 7,8 62 148 235 72,7 5; ET 8 72 60 122 34 2 ET 7,8 126 130 251 54 7 ET 7,6 14 83	5
Média 7 64 138 226,8 58,5 8, EB 7,9 122 340 736 61,2 6, EB 8,1 92 440 532 52 5 EB 8,6 190 300 507 117 10 EB 7,5 84 380 547 53 6 EB 8,4 232 300 628 88 13 Média 8,1 144 352 590 74,24 8, ET 7,8 62 148 235 72,7 5, ET 8 72 60 122 34 2 ET 7,8 126 130 251 54 7 ET 7,6 14 83 152 47 4 ET 7,7 118 170 283 47 8 Média 7,78 78,4	5
EB 7,9 122 340 736 61,2 6, EB 8,1 92 440 532 52 5 EB 8,6 190 300 507 117 10 EB 7,5 84 380 547 53 6 EB 8,4 232 300 628 88 12 Média 8,1 144 352 590 74,24 8, ET 7,8 62 148 235 72,7 5; ET 8 72 60 122 34 2 ET 7,8 126 130 251 54 7 ET 7,6 14 83 152 47 4 ET 7,7 118 170 283 47 8 Média 7,78 78,4 118,2 208,6 50,94 5,3 FB 7,1 80 <	1
EB 8,1 92 440 532 52 5 EB 8,6 190 300 507 117 10 EB 7,5 84 380 547 53 6 EB 8,4 232 300 628 88 13 Média 8,1 144 352 590 74,24 8, ET 7,8 62 148 235 72,7 5,7 ET 8 72 60 122 34 2 ET 7,8 126 130 251 54 7 ET 7,6 14 83 152 47 4 ET 7,7 118 170 283 47 8 Média 7,78 78,4 118,2 208,6 50,94 5,3 FB 7,1 80 298 399 68,2 5, FB 7,8 128) i
EB 8,6 190 300 507 117 10 EB 7,5 84 380 547 53 6 EB 8,4 232 300 628 88 13 Média 8,1 144 352 590 74,24 8, ET 7,8 62 148 235 72,7 5, ET 8 72 60 122 34 2 ET 7,8 126 130 251 54 7 ET 7,6 14 83 152 47 4 ET 7,6 14 83 152 47 8 Média 7,78 78,4 118,2 208,6 50,94 5,3 FB 7,1 80 298 399 68,2 5, FB 7,8 128 500 519 92 8 FB 7,8 58 <td< td=""><td>) </td></td<>)
EB 7,5 84 380 547 53 6 EB 8,4 232 300 628 88 13 Média 8,1 144 352 590 74,24 8, ET 7,8 62 148 235 72,7 5, ET 8 72 60 122 34 2 ET 7,8 126 130 251 54 7 ET 7,6 14 83 152 47 4 ET 7,7 118 170 283 47 8 Média 7,78 78,4 118,2 208,6 50,94 5,3 FB 7,1 80 298 399 68,2 5; FB 7,8 128 500 519 92 8 FB 7,8 58 170 350 29 5 FB 7,7 74	i
EB 8,4 232 300 628 88 13 Média 8,1 144 352 590 74,24 8, ET 7,8 62 148 235 72,7 5,7 ET 8 72 60 122 34 2 ET 7,8 126 130 251 54 7 ET 7,6 14 83 152 47 4 ET 7,7 118 170 283 47 8 Média 7,78 78,4 118,2 208,6 50,94 5,3 FB 7,1 80 298 399 68,2 5,5 FB 7,8 128 500 519 92 8 FB 7,8 58 170 350 29 5 FB 7,7 74 170 345 49 9	l .
Média 8,1 144 352 590 74,24 8, ET 7,8 62 148 235 72,7 5, ET 8 72 60 122 34 2 ET 7,8 126 130 251 54 7 ET 7,6 14 83 152 47 4 ET 7,7 118 170 283 47 8 Média 7,78 78,4 118,2 208,6 50,94 5,3 FB 7,1 80 298 399 68,2 5,9 FB 7,8 128 500 519 92 8 FB 7,8 58 170 350 29 5 FB 7,7 74 170 345 49 9	
ET 7,8 62 148 235 72,7 5,7 ET 8 72 60 122 34 2 ET 7,8 126 130 251 54 7 ET 7,6 14 83 152 47 4 ET 7,7 118 170 283 47 8 Média 7,78 78,4 118,2 208,6 50,94 5,3 FB 7,1 80 298 399 68,2 5,5 FB 7,8 128 500 519 92 8 FB 8,1 50 220 274 51 6 FB 7,8 58 170 350 29 5 FB 7,7 74 170 345 49 9	
ET 8 72 60 122 34 2 ET 7,8 126 130 251 54 7 ET 7,6 14 83 152 47 4 ET 7,7 118 170 283 47 8 Média 7,78 78,4 118,2 208,6 50,94 5,3 FB 7,1 80 298 399 68,2 5,9 FB 7,8 128 500 519 92 8 FB 8,1 50 220 274 51 6 FB 7,8 58 170 350 29 5 FB 7,7 74 170 345 49 9	7
ET 7,8 126 130 251 54 7 ET 7,6 14 83 152 47 4 ET 7,7 118 170 283 47 8 Média 7,78 78,4 118,2 208,6 50,94 5,3 FB 7,1 80 298 399 68,2 5,5 FB 7,8 128 500 519 92 8 FB 8,1 50 220 274 51 6 FB 7,8 58 170 350 29 5 FB 7,7 74 170 345 49 9	
ET 7,6 14 83 152 47 4 ET 7,7 118 170 283 47 8 Média 7,78 78,4 118,2 208,6 50,94 5,3 FB 7,1 80 298 399 68,2 5,9 FB 7,8 128 500 519 92 8 FB 8,1 50 220 274 51 6 FB 7,8 58 170 350 29 5 FB 7,7 74 170 345 49 9	
ET 7,7 118 170 283 47 8 Média 7,78 78,4 118,2 208,6 50,94 5,3 FB 7,1 80 298 399 68,2 5, FB 7,8 128 500 519 92 8 FB 8,1 50 220 274 51 6 FB 7,8 58 170 350 29 5 FB 7,7 74 170 345 49 9	
Média 7,78 78,4 118,2 208,6 50,94 5,3 FB 7,1 80 298 399 68,2 5,9 FB 7,8 128 500 519 92 8 FB 8,1 50 220 274 51 6 FB 7,8 58 170 350 29 5 FB 7,7 74 170 345 49 9	
FB 7,1 80 298 399 68,2 5,4 FB 7,8 128 500 519 92 8 FB 8,1 50 220 274 51 6 FB 7,8 58 170 350 29 5 FB 7,7 74 170 345 49 9	
FB 7,8 128 500 519 92 8 FB 8,1 50 220 274 51 6 FB 7,8 58 170 350 29 5 FB 7,7 74 170 345 49 9	4
FB 8,1 50 220 274 51 6 FB 7,8 58 170 350 29 5 FB 7,7 74 170 345 49 9)
FB 7,8 58 170 350 29 5 FB 7,7 74 170 345 49 9	
FB 7,7 74 170 345 49 9	
Média 7,7 78 271,6 377,4 57,84 6,7	
	8
FT 7,5 12 63 86 25,2 7	
FT 8,1 58 110 134 23 8	
FT 8 58 100 114 30 5	
FT 7,7 22 73 124 23 4	
FT 7,4 32 40 85 27 7	
Média 7,74 36,4 77,2 108,6 25,64 6,3	2
GB 7,8 16 90 119 53,5 7,	;
GB 8,2 60 80 188 76 10	ı
GB 7,7 80 70 132 19 12	r
GB 7,4 32 110 175 56 8	
GB 7,4 64 300 434 86 12	
Média 7,7 50,4 130 209,6 58,1 9,9)
GT 7,8 22 80 94 43,8 5,	}
GT 8,2 66 178 205 91 11	
GT 7,7 60 78 160 13 11	
GT 7,4 28 50 106 29 4	
GT 7,5 80 85 151 39 10	
Média 7,72 51,2 94,2 143,2 43,16 8,3	

Tabela inicial / final / % de remoção

		pН	Sólidos suspensos (mg/l)	CBO5 (mg O ₂ /l)	CQO (mg O ₂ /l)	Azoto Total (mg/l N)	Fósforo Total (mg/l P)
	Inicial	8,06	88	283	428,8	79,7	8,2
AB	Final	8,65	0,004	22	112	17,3	0,034
	% de remoção		99,995	92,226	73,967	78,283	99,586
	Inicial	7,74	49	65	153	60,3	5,220
AT	Final	8,41	0,190	20	85	7,1	0,047
	% de remoção		99,609	69,231	44,275	88,233	99,100
	Inicial	8	135	345	538	112,8	12,040
ВВ	Final	8,45	0,049	38	181	16,1	0,039
	% de remoção		99,964	88,986	66,459	85,727	99,676
	Inicial	7,5	92,8	281,6	413,4	74,6	9,96
ВТ	Final	8,65	0,023	57	203	9,9	0,042
	% de remoção		99,975	79,759	50,958	86,733	99,578
	Inicial	7,72	110,96	233,32	407,08	65,3	9,192
СВ	Final	8,34	0,025	14	66	17,1	0,087
	% de remoção	0,54	99,977	94,000	83,814	73,815	99,054
	Inicial	7,444	69	267,664	386	47,4	5,598
СТ	Final	8,33	0,050	20	38	3,0	0,054
	% de remoção	0,55	99,928	92,528	90,261	93,671	99,035
	Inicial	7,98	220	374	710	116,4	10,800
DB	Final	8,17	0,022	48	180	19,8	0,056
	% de remoção	0,17	99,990	87,166	74,693	82,996	99,481
	Inicial	7	64	138	227	58,5	8,200
DT	Final	7,93	0,028	42	88	4,9	0,029
	% de remoção	1,73	99,956	69,565	61,069	91,624	99,646
	Inicial	8,1	144	352	590	74,2	8,100
EB	Final	8,4	0,046	67	78	10,8	0,050
	% de remoção	0,4	99,968	80,966	86,792	85,453	99,383
	Inicial	7,78	78	118,2	209	50,9	5,340
ET	Final	8,04	0,039	18	45	7,4	0,037
	% de remoção		99,950	84,772	78,268	85,473	99,307
	Inicial	7,7	78	271,6	377	57,8	6,780
FB	Final	8,3	0,033	28	79	7,8	0,045
	% de remoção	0,5	99,958	89,691	78,959	86,515	99,336
	Inicial	7,74	36	77,2	109	25,6	6,200
FT	Final	8,4	0,044	13	46	4,0	0,026
	% de remoção	.,.	99,879	83,161	57,915	84,399	99,581
	Inicial	7,7	50	130	210	58,1	9,900
GB	Final	8,68	0,024	18	42	8,1	0,066
	% de remoção	.,,,,,	99,952	86,154	79,785	86,059	99,333
	Inicial	7,72	51	94,2	143	43,2	8,360
GT	Final	8,76	0,026	13	40	2,4	0,034
ı İ	% de remoção	.,	99,949	86,200	72,222	94,439	99,593

• Ensaios de pH

		рН							
AB	9,5	10	10,5	11	11,5	12			
Quantidade de cal (ml)	10	10,5	11	11,5	16	18			
Condutividade (µs/cm)	1250	1125	1140	1209	1728	-			
ABS 410	0,213	0,232	0,199	0,129	0,071	0,029			
ABS 254	1,361	1,502	1,85	1,206	1,002	0,467			
COO.	0,121	0,139	0,128	0,108	0,085	-			
CQO	0,134	0,135	0,124	0,106	0,086	-			
Média	0,1275	0,137	0,126	0,107	0,0855	-			
Concentração	427,0	458,7	422,0	358,7	287,0	111,6			

		рН								
BB	9,5	10	10,5	11	11,5	12				
Quantidade de cal (ml)	5	7	8	9	11	13				
Condutividade (µs/cm)	1386	1387	1305	1391	1715	-				
ABS 410 nm	0,093	0,101	0,049	0,028	0,018	0,051				
ABS 254nm	0,83	0,795	0,574	0,466	0,459	1,13				
COO (ma/l)	0,081	0,046	0,028	0,011	0,01	-				
CQO (mg/l)	0,052	0,028	0,027	0,007	0,011	-				
Média	0,0665	0,037	0,0275	0,009	0,0105	-				
Concentração (mg/l)	223,7	125,3	93,7	32,0	37,0	180,5				

			рН			
СВ	9,5	10	10,5	11	11,5	12
Quantidade de cal (ml)	4	6	8	9	10	11
Condutividade (µs/cm)	1064	1017	936	988	1395	-
ABS 410 nm	0,069	0,079	0,05	0,029	0,012	0,02
ABS 254nm	0,484	0,52	0,426	0,332	0,331	0,383
CQO	0,055	0,059	0,051	ı	0,039	-
CQO	0,054	0,058	0,047	0,051	-	-
Média	0,0545	0,0585	0,049	0,051	0,039	-
Concentração (mg/l)	183,7	197,0	165,3	172,0	132,0	65,9

		pН							
DB	9,5	10	10,5	11	11,5	12			
Quantidade de cal (ml)	4	5	6	7	10	12			
Condutividade (µs/cm)	1105	986	971	1025	1399	-			
ABS 410 nm	0,154	0,19	0,133	0,128	0,031	0,058			
ABS 254 nm	1,174	1,148	1,029	1,023	0,657	0,876			
CQO	0,068	0,032	0,031	0,033	0,011	-			
Concentração (mg/l)	228,7	108,7	105,3	112,0	38,7	179,8			

		pH								
EB	9,5	10	10,5	11	11,5	12				
Quantidade de cal (ml)	7	8	8,5	9	10	12				
Condutividade (µs/cm)	853	756	700	741	1184	-				
ABS 410 nm	0,082	0,104	0,11	0,065	0,021	0,035				
ABS 254 nm	0,681	0,718	0,906	0,637	0,49	0,806				
CQO	0,014	0,008	0,01	0,006	0,004	-				
Concentração (mg/l)	48,7	28,7	35,3	22,0	15,3	77,9				

		рН								
FB	9,5	10	10,5	11	11,5	12				
Quantidade de cal (ml)	2	5	7	9	10	12				
Condutividade (μs/cm)	1809	1761	1750	1793	2210	-				
ABS 410 nm	0,137	0,173	0,16	0,116	0,031	0,019				
ABS 254 nm	0,987	0,909	0,879	0,718	0,426	0,278				
CQO	0,008	0,012	0,006	0,006	0,018	-				
Concentração (mg/l)	28,7	42,0	22,0	22,0	62,0	79,4				

		рН							
GB	9,5	10	10,5	11	11,5	12			
Quantidade de cal (ml)	5	6	9	10	11	12			
Condutividade (µs/cm)	1701	1628	1634	1687	2180	-			
ABS 410 nm	0,03	0,021	0,04	0,027	0,02	0,003			
ABS 254 nm	0,296	0,261	0,311	0,251	0,211	0,229			

			р	Н		
AT	9,5	10	10,5	11	11,5	12
Quantidade de cal (ml)	5	7	8	10	13	15
Condutividade (µs/cm)	1022	905	871	1067	1642	-
ABS 410 nm	0,077	0,122	0,136	0,041	0,015	0,077
ABS 254 nm	0,543	0,643	0,687	0,396	0,324	0,527
CQO	0,008	0,002	0,004	0,006	0,031	1
CQO	0,004	0,008	0	0,004	0,019	1
Média	0,006	0,005	0,002	0,005	0,025	-
Concentração (mg/l)	22,0	18,7	8,7	18,7	85,3	85,1

			рН	[
BT	9,5	10	10,5	11	11,5	12
Quantidade de cal (ml)	7	8	8,5	12	13	15
Condutividade (µs/cm)	1551	1575	1476	1635	1869	-
ABS 410 nm	0,063	0,062	0,042	0,026	0,017	0,024
ABS 254 nm	0,436	0,425	0,36	0,316	0,27	1,084
CQO	0,032	0,042	0,038	0,034	0,024	-
CQO	0,037	0,042	0,031	0,024	0,021	-
Média	0,0345	0,042	0,0345	0,029	0,0225	-
Concentração (mg/l)	117,0	142,0	117,0	98,7	77,0	202,7

		рН							
CT	9,5	10	10,5	11	11,5	12			
Quantidade de cal (ml)	3	4	5	7	8	10			
Condutividade (µs/cm)	935	972	935	956	1381	-			
ABS 410 nm	0,046	0,049	0,06	0,036	0,005	0,025			
ABS 254 nm	0,294	0,283	0,248	0,201	0,158	0,26			

			F	Н		
DT	9,5	10	10,5	11	11,5	12
Quantidade de cal (ml)	0,5	1	1,5	2	6	8
Condutividade (µs/cm)	1049	1030	1013	1024	1761	-
ABS 410 nm	0,051	0,047	0,046	0,044	0,009	0,012
ABS 254 nm	0,37	0,339	0,332	0,376	0,23	0,301
CQO	0,038	0,039	0,024	0,016	0,032	-
Concentração (mg/l)	128,7	132,0	82,0	55,3	108,7	88,3

		рН						
ET	9,5	10	10,5	11	11,5	12		
Quantidade de cal (ml)	4	5	6	8	9	10		
Condutividade (µs/cm)	816	728	694	852	1242	-		
ABS 410 nm	0,073	0,109	0,108	0,015	0,014	0,051		
ABS 254 nm	0,369	0,441	0,449	0,18	0,183	0,394		

		рН							
FB	9,5	10	10,5	11	11,5	12			
Quantidade de cal (ml)	2	5	7	9	10	12			
Condutividade (µs/cm)	1809	1761	1750	1793	2210	-			
ABS 410 nm	0,137	0,173	0,16	0,116	0,031	0,019			
ABS 254 nm	0,987	0,909	0,879	0,718	0,426	0,278			

		рН							
GT	9,5	10	10,5	11	11,5	12			
Quantidade de cal (ml)	3	6	7	8	10	12			
Condutividade (µs/cm)	1412	1412	1409	1784	2310	-			
ABS 410 nm	0,03	0,013	0,036	0,017	0,007	0,002			
ABS 254 nm	0,231	0,222	0,195	0,206	0,212	0,173			

pH dos ensaios ao longo do tempo

			1ª am	ostra				
Tempo (h)	0	23	47	110	143	161	185	333
AB	12,05	11,37	10,89	9,05	8,57	8,26	8,44	7,93
AT	11,32	10,04	10,16	8,3	9,16	8,06	8,34	8,54
BB	11,82	10,88	10,29	9,04	8,81	8,26	8,13	8,4
BT	12,02	11,32	10,54	9,41	9,22	8,78	8,63	8,51
СВ	12,13	11,55	10,56	9,12	8,7	8,35	8,13	8,27
CT	12,53	12,3	11,71	9,45	8,89	8,64	8,69	8,3
DB	12,21	11,9	10,82	9,16	8,88	8,6	8,12	8,29
DT	12,33	12,69	12,53	11,6	11,64	10,75	9,8	8
EB	12,04	11,27	10,59	8,99	9	8,68	7,96	8,24
ET	12,27	11,87	10,85	9,22	8,89	8,54	7,92	8,29
FB	12,34	11,86	10,81	9,31	8,62	8,28	8,23	8,4
FT	12,47	11,89	10,9	9,38	9	8,72	8,38	8,54
GB	12,26	11,35	11,45	9,18	8,68	8,37	8,16	8,37
GT	12,22	11,91	11,02	9,39	8,88	8,45	8,29	8,54

			2ª am	ostra				
Tempo (h)	0	47	70	95	110	185	333	996
AB	11,89	11,8	11,19	11,17	9,9	9,16	8,68	8,65
AT	11,8	11,73	11,48	11,19	9,52	8,79	8,33	8,41
BB	11,43	10,78	11,26	10,04	8,68	7,95	8,08	8,45
BT	12,02	11,64	11,51	11,33	9,83	8,74	8,35	8,65
СВ	12,04	11,95	11,73	11,81	10,31	9,18	8,21	8,34
CT	12,24	12,32	12,14	12,33	11,7	11,11	9,97	8,33
DB	12,03	11,92	11,65	11,7	10,26	9,03	8,01	8,17
DT	12,31	12,3	12,24	12,47	12,13	12,02	11,95	7,93
EB	12,06	12,04	11,66	11,57	9,88	8,77	8,16	8,4
ET	12,09	12,05	12,09	12,13	11,31	9,45	8,31	8,04
FB	12,34	11,61	11,16	11	9,54	8,18	8,1	8,3
FT	12,19	12,08	10,68	12,3	11,38	9,77	8,31	8,4
GB	10,62	11,16	10,64	10,71	9,9	9,06	8,66	8,68
GT	11,79	11,24	10,71	10,42	9,77	9,09	8,63	8,76

		3ª amostra			
Tempo (h)	0	47	110	185	333
AB	12,08	11,71	10,34	8,95	8,3
AT	12,14	12,01	10,24	8,67	8,45
BB	12,07	10,71	9,6	8,39	8,41
BT	12,09	10,55	9,38	8,38	8,36
СВ	-	-	-	-	-
СТ	-	-	-	-	-
DB	12,39	11,4	9,97	8,12	8,26
DT	12,19	11,78	9,81	8,05	8,24
EB	12,2	10,2	8,74	7,98	8,19
ET	12,09	11,48	9,04	8,2	8,23
FB	12,15	11,66	9,44	8,23	8,37
FT	12,46	12	9,89	8,48	8,42
GB	12,48	12,02	9,5	8,05	8,11
GT	12,26	11,82	9,27	8,17	8,16

Absorvância a 254 nm dos ensaios ao longo do tempo

			1ª amostra				
Tempo (h)	0	23	47	113	143	161	185
AB	0,467	0,451	0,454	0,445	0,464	0,518	0,487
AT	0,527	0,539	0,519	0,481	0,668	0,857	0,935
BB	1,13	1,02	0,917	0,876	0,928	1,067	1,161
BT	1,084	0,872	0,691	0,485	0,494	0,531	0,721
СВ	0,383	0,335	0,348	0,334	0,342	0,429	0,476
CT	0,26	0,264	0,264	0,243	0,258	0,257	0,264
DB	0,876	0,84	0,81	0,744	0,761	0,779	1,007
DT	0,301	0,319	0,329	0,348	0,344	0,344	0,353
ЕВ	0,806	0,63	0,535	0,437	0,454	0,511	0,64
ET	0,394	0,384	0,391	0,37	0,377	0,438	0,496
FB	0,278	0,293	0,292	0,274	0,365	0,499	0,522
FT	0,254	0,265	0,279	0,26	0,269	0,273	0,352
GB	0,173	0,202	0,207	0,183	0,193	0,191	0,247
GT	0,229	0,236	0,281	0,236	0,307	0,383	0,404

			2ª amostra				
Tempo (h)	0	47	70	95	113	161	996
AB	0,154	0,206	0,198	0,199	0,184	0,245	0,374
AT	0,368	0,388	0,371	0,352	0,349	0,384	0,503
BB	0,768	0,727	0,71	0,67	0,751	0,827	0,861
BT	1,086	0,944	0,876	0,721	0,483	0,537	0,77
СВ	0,387	0,407	0,389	0,392	0,358	0,386	0,515
CT	0,318	0,344	0,333	0,322	0,304	0,31	0,392
DB	0,719	0,706	0,696	0,656	0,599	0,602	0,764
DT	0,231	0,269	0,261	0,266	0,264	0,313	0,477
EB	0,387	0,387	0,383	0,372	0,34	0,399	0,491
ET	0,168	0,198	0,175	0,182	0,159	0,184	0,266
FB	0,534	0,512	0,481	0,426	0,375	0,559	0,524
FT	0,228	0,267	0,252	0,243	0,283	0,252	0,213
GB	0,307	0,324	0,301	0,302	0,291	0,381	0,416
GT	0,301	0,311	0,308	0,298	0,212	0,36	0,386

	3ª aı	mostra		
Tempo (h)	47	113	161	406
AB	0,638	0,583	0,785	0,976
AT	0,215	0,179	0,208	0,233
ВВ	0,642	0,524	0,567	0,606
BT	0,485	0,311	0,35	0,484
СВ	-	-	-	-
CT	-	-	-	-
DB	0,848	0,631	0,833	0,919
DT	0,483	0,304	0,388	0,414
EB	0,416	0,423	0,527	0,546
ET	0,17	0,163	0,221	0,24
FB	0,272	0,185	0,287	0,331
FT	0,206	0,159	0,218	0,223
GB	0,234	0,194	0,23	0,258
GT	0,2	0,201	0,233	0,285

Absorvância a 410 nm dos ensaios ao longo do tempo

			1ª amostra				
Tempo (h)	0	23	47	113	143	161	185
AB	0,029	0,02	0,02	0,018	0,019	0,032	0,028
AT	0,077	0,07	0,059	0,041	0,106	0,177	0,21
BB	0,051	0,055	0,043	0,036	0,056	0,118	0,176
BT	0,024	0,018	0,018	0,015	0,015	0,026	0,111
СВ	0,02	0,013	0,014	0,011	0,012	0,047	0,06
СТ	0,025	0,019	0,007	0,006	0,004	0,005	0,005
DB	0,058	0,035	0,038	0,031	0,031	0,038	0,149
DT	0,012	0,008	0,006	0,007	0,007	0,004	0,005
EB	0,035	0,019	0,017	0,013	0,014	0,035	0,09
ET	0,051	0,022	0,02	0,015	0,015	0,045	0,081
FB	0,019	0,021	0,009	0,01	0,036	0,092	0,094
FT	0,005	0,011	0,011	0,008	0,01	0,012	0,043
GB	0,002	0,007	0,008	0,005	0,005	0,005	0,026
GT	0,003	0,003	0,01	0,001	0,03	0,063	0,065

			2ª amostra				
Tempo (h)	0	47	70	95	113	199	996
AB	0,037	0,011	0,009	0,012	0,01	0,032	0,056
AB	0,02	0,014	0,016	0,016	0,013	0,026	0,19
AB	0,038	0,03	0,028	0,032	0,072	0,109	0,056
AB	0,022	0,015	0,015	0,016	0,011	0,05	0,083
AB	0,022	0,017	0,015	0,014	0,01	0,022	0,032
AB	0,017	0,015	0,015	0,012	0,005	0,009	0,013
AB	0,035	0,034	0,024	0,025	0,018	0,019	0,031
AB	0,02	0,018	0,009	0,014	0,008	0,011	0,008
AB	0,025	0,022	0,012	0,025	0,012	0,037	0,014
AB	0,02	0,019	0,004	0,021	0,002	0,005	0,012
AB	0,039	0,026	0,015	0,029	0,013	0,099	0,047
AB	0,035	0,022	0,007	0,025	0,008	0,013	0,017
AB	0,038	0,025	0,016	0,028	0,013	0,04	0,022
AB	0,04	0,022	0,013	0,031	0,012	0,038	0,037

	3ª a	mostra		
Tempo (h)	47	113	218	406
AB	0,05	0,036	0,147	0,133
AT	0,035	0,011	0,021	0,026
BB	0,029	0,028	0,045	0,048
BT	0,017	0,015	0,026	0,054
DB	0,032	0,024	0,107	0,116
DT	0,04	0,013	0,08	0,071
EB	0,026	0,033	0,078	0,058
ET	0,025	0,008	0,029	0,028
FB	0,026	0,009	0,049	0,06
FT	0,066	0,009	0,025	0,026
GB	0,063	0,008	0,018	0,026
GT	0,017	0,011	0,015	0,031

Cálcio (mg/l) dos ensaios ao longo do tempo

1	a	а	m	10	S	fı	ra

Tempo (h)	0	23	46	113	143	165	185
AB	0,80	0,35	0,17	0	0,19	0,04	0,08
AT	0,26	0,12	0,25	0,27	0	0,42	0,35
BB	0,75	0,38	0,25	0,31	1,00	0,27	0,27
BT	0,31	0	0,05	0,12	0,19	0,08	0,08
СВ	1,05	0,38	0,25	0,19	0,19	0,23	0,19
СТ	2,15	1,27	0,78	0,08	0,15	0,12	0,12
DB	1,57	0,65	0,38	0,23	0,42	0,27	0,31
DT	4,54	4,04	3,35	1,96	1,04	0,73	0,58
EB	0,91	0,38	0,23	0,23	0,19	0,19	0,23
ET	1,18	0,46	0,20	0,19	0,15	0,19	0,12
FB	1,25	0,38	0,17	0,19	0,12	0,15	0,19
FT	1,18	0,23	0,08	0	0,19	0,12	0,08
GB	2,32	1,23	0,58	0	0,19	0,23	0,23
GT	1,12	0,19	0,09	0	0,12	0,15	0,15

2 ^a	amos	stra

Tempo (h)	0	46	68	119	165	350
AB	1,61	0,27	0	0,04	0	0,15
AT	1,31	0,65	0	0	0	0,38
BB	1,38	0,46	0,15	0,15	0,65	0,62
BT	1,54	0,65	0,19	0	0	0,15
СВ	1,81	1,19	0,38	0,08	0	0,27
CT	3,31	2,54	1,31	0,54	0	0,15
DB	1,35	1,19	0,58	0,27	0,15	0,58
DT	3,73	3,61	2,88	2,27	0,96	1,04
EB	1,04	0,85	0,12	0	0	0,31
ET	3,04	1,85	0,85	0,46	0,19	0,42
FB	2,00	0,58	0,19	0	0,04	0,27
FT	3,54	2,61	1,23	0	0	0
GB	0,92	0	0	0	0	0
GT	0,50	0	0	0	0	0

3ª amostra

Tempo (h)	46	92	165	350
AB	0,85	0	0	0
AT	1,11	0	0	0
BB	0	0	0	0
ВТ	0	0	0	0,19
DB	0,92	0,19	0,23	0,31
DT	1,50	0,15	0,23	0,27
EB	0	0	0,08	0,15
ET	0,62	0	0	0,15
FB	0,92	0	0	0,12
FT	1,58	0	0	0
GB	2,04	0	0,12	0,31
GT	1,50	0,08	0,23	0,27

Alcalinidade à fenolftaleína (mg/l) dos ensaios ao longo do tempo

			1ª amostra					
Tempo (h)	0	23	46	113	143	165	185	350
AB	410	245	175	50	20	5	0	0,3
AT	295	120	75	25	30	0	0	0,4
BB	610	260	190	70	70	5	0	0
BT	430	225	165	90	55	40	0	0
СВ	455	180	115	55	40	5	0	0
СТ	720	320	215	45	35	15	0	0
DB	815	330	220	55	30	15	0	0
DT	1045	695	520	255	100	45	0	0
EB	375	130	85	80	25	5	0	0
ET	545	175	130	55	20	10	0	0,2
FB	535	170	115	50	5	0	0	0
FT	550	170	130	75	40	15	5	0,1
GB	655	285	130	70	15	5	0	
GT	520	180	115	60	20	10	10	

		2ª amostr	a			
Tempo (h)	0	46	68	119	165	350
AB	635	175	180	70	100	5
AT	655	165	95	45	10	0
ВВ	530	130	55	10	0	5
BT	680	190	110	30	25	5
СВ	775	300	180	45	20	10
CT	985	565	395	135	70	10
DB	815	250	165	40	30	0
DT	900	585	505	250	200	0
EB	655	195	100	15	10	5
ET	670	315	240	65	5	0
FB	600	160	65	15	5	5
FT	950	350	320	100	45	10
GB	490	210	160	100	75	5
GT	560	215	0	0	120	15

	3ª amostra									
Tempo (h)	46	92	165	350						
AB	345	100	35	5						
AT	335	90	30	10						
BB	150	45	25	10						
BT	75	35	20	5						
DB	285	45	20	5						
DT	235	25	0	10						
EB	80	10	0	0						
ET	190	25	20	5						
FB	195	35	15	10						
FT	265	65	20	5						
GB	225	10	0	0						
GT	155	25	0	0						

Alcalinidade ao alaranjado de metilo (mg/l) dos ensaios ao longo do tempo

				1ª amostra				1 ^a amostra											
Tempo (h)	0	23	46	113	143	165	185	350											
AB	85	75	60	160	120	135	145	165											
AT	145	185	145	215	195	235	250	340											
BB	170	145	155	160	180	220	235	260											
BT	125	130	140	160	200	225	110	280											
СВ	50	85	45	45	60	95	95	130											
CT	60	50	50	45	45	70	115	140											
DB	160	125	130	195	140	175	185	220											
DT	60	90	45	40	15	20	25	55											
EB	155	140	135	90	140	175	195	245											
ET	60	50	55	75	100	110	130	160											
FB	45	60	55	75	130	135	150	190											
FT	40	80	70	95	135	160	175	190											
GB	30	50	40	5	65	80	100	135											
GT	25	50	80	100	145	160	165	200											

	2ª amostra										
Tempo (h)	0	46	68	119	165	350					
AB	85	75	0	90	135	25					
AT	100	70	35	50	80	20					
BB	135	140	110	140	175	15					
BT	240	190	165	185	195	40					
СВ	130	85	45	70	85	20					
CT	145	65	65	50	45	5					
DB	235	140	120	100	90	25					
DT	75	40	55	30	40	10					
EB	105	80	70	85	100	20					
ET	75	40	30	15	25	10					
FB	160	115	105	120	155	20					
FT	110	25	0	55	70	20					
GB	70	45	95	135	175	30					
GT	60	50	0	0	130	30					

3ª amostra										
Tempo (h)	mpo (h) 46		165	350						
AB	175	175 185		30						
AT	30	65	105	20						
BB	140	185	225	25						
BT	175	190	205	30						
DB	245	205	245	25						
DT	165	150	185	20						
EB	70	110	145	20						
ET	70	65	100	10						
FB	75	110	145	10						
FT	50	80	145	10						
GB	70	35	90	15						
GT	45	35	95	15						

Alcalinidade Total (mg/l) dos ensaios ao longo do tempo

1ª amostra

Tempo (h)	0	23	46	113	143	161	185	333
AB	495	320	235	210	140	140	145	165,3
AT	440	305	220	240	225	235	250	340,4
BB	780	405	345	230	250	225	235	260
BT	555	355	305	250	255	265	110	280
СВ	505	265	160	100	100	100	95	130
CT	780	370	265	90	80	85	115	140
DB	975	455	350	250	170	190	185	220
DT	1105	785	565	295	115	65	25	55
EB	530	270	220	170	165	180	195	245
ET	605	225	185	130	120	120	130	160,2
FB	580	230	170	125	135	135	150	190
FT	590	250	200	170	175	175	180	190,1
GB	685	335	170	75	80	85	100	135
GT	545	230	195	160	165	170	175	200

2ª amostra

Tempo (h)	0	43	68	119	172	969
AB	720	250	180	160	235	30
AT	755	235	130	95	90	20
BB	665	270	165	150	175	20
BT	920	380	275	215	220	45
СВ	905	385	225	115	105	30
CT	1130	630	460	185	115	15
DB	1050	390	285	140	120	25
DT	975	625	560	280	240	10
EB	760	275	170	100	110	25
ET	745	355	270	80	30	10
FB	760	275	170	135	160	25
FT	1060	375	320	155	115	30
GB	560	255	255	235	250	35
GT	620	265	0	0	250	45

3ª amostra										
Tempo (h)	50	92	191	379						
AB	520	285	265	35						
AT	365	155	135	30						
BB	290	230	250	35						
BT	250	225	225	35						
DB	530	250	265	30						
DT	400	175	185	30						
EB	150	120	145	20						
ET	260	90	120	15						
FB	270	145	160	20						
FT	315	145	165	15						
GB	295	45	90	15						

Condutividade ($\mu S/cm$) ao longo do tempo

GT

	1ª amostra										
Tempo (h)	0	23	46	113	143	161					
AB	1321	756	711	670	609	864					
AT	875	857	892	856	981	476					
BB	2450	2070	2050	2040	2290	1891					
ВТ	2010	1467	1540	1522	1532	1564					
СВ	1639	753	971	842	825	783					
CT	2770	1946	1127	862	836	915					
DB	1641	1313	1093	1149	1147	1183					
DT	4430	3820	2810	2240	1482	1267					
EB	796	773	873	776	798	833					
ET	1655	965	709	619	628	644					
FB	2540	1666	1399	1464	1490	1533					
FT	1412	1577	1325	1257	1295	1070					
GB	2870	2610	1067	1458	1508	1273					
GT	2390	1303	1296	1209	1353	1281					

• CQO

1a amostra 2ª amostra 3ª amostra Concentração Concentração Concentração ABS Médias ABS Médias ABS Médias (mg/l) (mg/l) (mg/l) AB1 0,016 AB1 0,018 AB1 0,054 0,045 AB2 0,018 AB2 0,046 AB2 0,027 0,029 99,8 AB3 0,018 0,018 62,0 AB3 0,054 0,051 173,1 AB3 AT1 AT1 0,036 AT1 0,014 0,029 0,009 AT2 _ AT2 AT2 AT3 AT3 0,033 0,033 110,9 AT3 0,272 0,012 40,3 BB1 0,057 BB1 0,054 BB1 0,061 BB2 0,038 BB2 0,054 BB2 0,057 163,1 197,6 BB3 0,05 0,048 BB3 0,053 0,054 180,9 BB3 0,058 0,059 BT1 0,059 BT1 0,076 BT1 0,063 0,047 BT2 0,067 BT2 0,056 BT2 BT3 159,8 BT3 253,1 BT3 195,3 0,036 0,047 0,083 0,075 0,055 0,058 CB1 0,024 CB1 0,028 DB1 0,083 CB2 0 CB2 0,031 DB2 0,076 CB3 0,003 0,009 32,0 CB3 0,029 0,029 99,8 DB3 0,083 0,081 270,9 CT1 0,001 CT1 0,017 DT1 0,039 CT2 0 CT2 0,014 DT2 0,036 CT3 0 0.000 3,1 CT3 0.032 0.021 72,0 DT3 0.037 0.037 126,4 DB1 0,024 DB1 0,023 EB1 0,025 DB2 0,01 DB2 0,064 EB2 0,026 DB3 0,039 0,024 83,1 DB3 0,078 0,055 185,3 EB3 0,031 0,027 93,1 ET1 DT1 DT1 0,021 0,019 DT2 DT2 0,016 ET2 0,015 0,058 DT3 0,032 107,6 0,018 0,017 DT3 ET3 59,8 EB1 0,01 EB1 0,031 FB1 0,026 0,015 0,027 FB2 0,032 EB2 EB2 EB3 0,014 0,013 45,3 EB3 0,026 0,028 95,3 FB3 0,026 0,028 95,3 ET1 0,009 ET1 0,013 FT1 0,009 ET2 0,004 ET2 0,009 FT2 0,01 ET3 0,022 0,012 40.9 ET3 0,008 0,010 35,3 FT3 0,01 0,010 34,2 FB1 0,009 FB1 0,009 GB1 0,01 FB2 0,009 FB2 0,042 GB2 0,014 FB3 0,012 0,010 35,3 FB3 0,044 0,032 107,6 GB3 0,013 0,012 43,1 0,015 FT1 FT1 0,009 GT1 0,008 FT2 0,011 FT2 0,011 GT2 0,009 FT3 0,006 0,011 37,6 FT3 0,037 0,019 65,3 GT3 0,011 0,009 33,1 GB1 0,005 GB1 0,016 GB2 0,015 GB2 0,012 GB3 0,014 0,011 39,8 GB3 0,01 0,013 44,2 GT1 0,042 GT1 0,01 GT2 0,021 GT2 0,016 GT3 0,062 0,042 140,9 GT3 0,024 0,017 57,6

Azoto Kjeldahl (mg/l)

	12000 1290144							
	1ª amos	stra		2ªamos	stra	3ª amostra		
	Titulação (ml)	Concentração (mg/l)		Titulação (ml)	Concentração (mg/l)		Titulação (ml)	Concentração (mg/l)
AB	1,8	9,4	AB	0,9	4,0	AB	1,8	10,1
AT	-	-	AT	1	4,7	AT	0,5	1,3
BB	-	-	BB	1,8	10,1	BB	1,4	7,4
BT	1,2	5,4	BT	0,8	3,4	BT	1	4,7
СВ	1,8	9,4	СВ	1,2	6,1	СВ	1	-
СТ	0,5	0,7	CT	0,9	4,0	CT	1	-
DB	-	-	DB	2,1	12,1	DB	2	11,4
DT	0,6	1,3	DT	1	4,7	DT	1	4,7
EB	-	-	EB	1	4,7	EB	1,6	8,7
ET	1	4,0	ET	0,7	2,7	ET	0,8	3,4
FB	1	4,0	FB	0,9	4,0	FB	0,8	3,4
FT	0,7	2,0	FT	0,5	1,3	FT	0,7	2,7
GB	-	-	GB	0,9	4,0	GB	0,9	4,0
GT	-	-	GT	0,7	2,7	GT	0,6	2,0
Branco	0,4		Branco	0,3		Branco	0,3	

Azoto Amoniacal (mg/l)

	1ª amo	stra		3ª amo	estra
	Titulação (ml)	Concentração (mg/l)		Titulação (ml)	Concentração (mg/l)
		4,7			6,4
AB	1,8		AB	2,1	
ΑТ		-	AT	0.6	1,3
AT	-	11,1	AI	0,6	4,4
BB	3,7	11,1	BB	1,5	7,7
		2,7		-	3,7
BT	1,2		BT	1,3	
		4,7			-
СВ	1,8	0.2	СВ	-	
СТ	0,5	0,3	СТ	-	-
- 01	0,0	11,8			4,7
DB	3,9		DB	1,6	,
		0,7		-	0,8
DT	0,6		DT	0,45	
		5,0			2,7
EB	1,9		EB	1	
		2,0			0,0
ET	1	2.0	ET	0,2	1.0
FB	1	2,0	FB	0,75	1,8
ГЪ	1	1,0	LD	0,73	0,7
FT	0,7		FT	0,4	·
		3,9			0,7
GB	1,55		GB	0,4	
		17,1			0,7
GT	5,5		GT	0,4	
Branco	0,4		Branco	0,2	

Fósforo Total (mg/l)

		1ª amostra			2ª amostra	3ª amostra		3ª amostra
	ABS	Concentração (mg/l)		ABS	Concentração (mg/l)		ABS	Concentração (mg/l)
AB	0,003	0,034	AB	0,003	0,034	AB	0,003	0,0340
AT	0,007	0,066	AT	0,003	0,034	AT	0,004	0,0421
BB	0,004	0,042	ВВ	0,002	0,026	BB	0,005	0,0502
ВТ	0,003	0,034	ВТ	0,005	0,050	BT	0,004	0,0421
СВ	0,008	0,074	СВ	0,011	0,099	DB	0,003	0,0340
СТ	0,003	0,034	СТ	0,008	0,074	DT	0,003	0,0340
DB	0,012	0,107	DB	0,002	0,026	EB	0,003	0,0340
DT	0,003	0,034	DT	0,001	0,018	ET	0,003	0,0340
EB	0,01	0,091	EB	0,002	0,026	FB	0,002	0,0259
ET	0,004	0,042	ET	0,003	0,034	FT	0	0,0097
FB	0,007	0,066	FB	0,004	0,042	GB	0,006	0,0583
FT	0,004	0,042	FT	0,002	0,026	GT	0	0,0097
GB	0,008	0,074	GB	-				
GT	0,006	0,058	GT	-				

Oxigénio Dissolvido (mg/l)

		2ª amostra				3ª amostra	
	V frasco (ml)	Titulação (ml)	Concentração (mg/l)		V frasco (ml)	Titulação (ml)	Concentração (mg/l)
AB	279	5,8	5,88	AB	274	4,9	4,97
AT	275	3,1	3,15	AT	266,5	1,4	1,42
BB	266,5	1,4	1,42	ВВ	279	0,8	0,81
ВТ	270	0,6	0,61	ВТ	266,5	0,4	0,41
СВ	272	2,3	2,33	DB	274	0,6	0,61
СТ	272	3,9	3,96	DT	279	1,4	1,42
DB	274	1,7	1,73	EB	279	1,6	1,62
DT	266,5	3,2	3,25	ET	266,5	1,5	1,52
EB	267,5	2	2,03	FB	274	0,7	0,71
ET	267,5	2,4	2,44	FT	266,5	1,2	1,22
FB	270	2,6	2,64	GB	279	1,8	1,83
FT	266,5	3,7	3,76	GT	274	1,4	1,42
GB	272	2,1	2,13				
GT	275	2,7	2,74				

CBO₅ (mg/l)

	1ª amostra		2ª amostra	3ª amostra					
	Concentração (mg/l)		Concentração (mg/l)		Concentração (mg/l)				
AB	15	AB	5		Concentração				
AT	-	AT	15	AB	45				
ВВ	35	BB	45	AT	25				
ВТ	20	ВТ	115	ВВ	35				
СВ	15	СВ	13	ВТ	35				
СТ	20	СТ	20	DB	65				
DB	65	DB	15	DT	90				
DT	20	DT	15	EB	25				
EB	70	EB	105	ET	20				
ET	20	ET	15	FB	30				
FB	15	FB	40	FT	25				
FT	5	FT	10	GB	25				
GB	15	GB	15	GT	25				
GT	5	GT	10						

Sólidos Suspensos Totais (SST)

1ª amostra												
		Aferição			Concetração (mg/l)							
	1° pes	so (g)	Média	2º pe	so (g)	Média	SST					
AB	62,8514	62,8516	62,8515	62,8516	62,8518	62,8517	4					
AT	52,6947	52,6949	52,6948	52,6959	52,6962	52,6961	25					
ВВ	59,0061	59,0063	59,0062	59,0085	59,0088	59,0087	49					
ВТ	57,4488	57,4484	57,4486	57,4495	57,45	57,4498	23					
СВ	57,6771	57,6772	57,6772	57,6784	57,6784	57,6784	25					
СТ	63,9284	63,9286	63,9285	63,9308	63,9312	63,9310	50					
DB	61,6323	61,632	61,6322	61,633	61,6335	61,6333	22					
DT	56,4044	56,4048	56,4046	56,406	56,406	56,4060	28					
EB	65,3716	65,372	65,3718	65,374	65,3742	65,3741	46					
ET	61,78	61,7802	61,7801	61,7819	61,7822	61,7821	39					
FB	56,2583	56,2587	56,2585	56,2599	56,2604	56,2602	33					
FT	56,3567	56,3563	56,3565	56,3577	56,3579	56,3578	26					
GB	58,7884	58,788	58,7882	58,7891	58,7897	58,7894	24					
GT	60,7424	60,742	60,7422	60,7435	60,7435	60,7435	26					

Ensaios de decantação de lamas (ml)

ET	За	800	350	230	195	180	160	155	150	135	130	125	120												\Box
	2a	240	150	145	125	115	105	100			95														
		400	120	100	90	80	75 1	70 1	\dashv																
	19	900 4	400	280	210	180	160	145	140	130	125	120	_												
GB	За	750 90	175 40	140 28	120 2		110 16	105	100	95 13	90 13	77													
	2ª					96 110	90 11	80 10	80 10	5	5		70					09							
	Ia	009) 160) 130	0 110					0	10		7					9							
FT	За	006	400	180	150	135	120	110	105	100	95														
	2ª	800	250	200	160	150	140	130	120	110	105	100							80						
	19	009	200	150	130	115	105	100	91	89	80	79					70								
	За	700	250	180	140	130	125	115	110	105	100														
FB	2ª	700	250	180	150	140			120			105			95			90							
	19	500	160	130	115	100	92	06	85	80	75									09					
	За	900	450	300	280	250	205	195	180	170	150	145	130	125											
ET	2ª	700	350	190	160	143	125	120	115	110	105	100													
	l _a	800	400	150	130	120	110	100	93	06	06	85						70							
	За	006	500	210	170	150	142	135	130	125	120														
EB	2ª	700	400	220	170	150	140	130	120	115	110	16				100							-		
	l _a) 750	330) 140	0 120	5 105) 95	8 90	85	80	80	75					70						62		_
DT	За	0 400	0 120	0 110	0 100	5 95	06 0	88 0	5 85	0				70 80											
	2ª	008	0 300	0 130	5 120	5 105	0 100	2 90	90 85	5 80	2			7			70							65	
	19	008 09	220 450	180 130	155 115	105	130 100	125 92	120 9	118 85	0 82	105					7							9	
<u>a</u>	а За	900 550	140 22	115 18	105	90 145	85 13	80 12	80 12	Ξ	110	10													
DB	1ª 2ª	9 008	200	130	115 10	105	3 06	85 8	80	62	75	71	70						65						
	2ª 1	700	250 2	150	145 1	125	100			06			80												
IJ	la 5	950 7	200	140	120	100	90 1	08	80	9/							09								
	2ª	009	210	165	145	140	130	120	110			95					80								
CB	19	006	009	150	120	110	100	06	68	68					77						70				
	За	700	140	130	110	105	100	86	06																
BT	2ª	009	220	130	120	105	100																		\neg
	l a	800	200	150	130	115	107	100	95	06	68					75									\exists
	За	280	210	180	165	155	150	145	140	130	130	128										110			
BB	2ª	800	250	190	180	160	150	140	130					110					100						
	l a	009	450	270	220	195	180	160	150	145	135	130	126	120	119	116	110								\exists
	За	200	190	160	150	140	130	100	100	97	95														
AT	2ª	006	400	150	125	100	06		\dashv		06												70		\dashv
	la	08	75	09	59	57	55	54	53	52	51	51	51	51	51	51	51	51	51	51	50				
AB	За	800	220	170	160	150	145	140	140	130	125	120					110							105	_
	2ª	500	100	80	70	70	65	50																	
	la			120	105	95	90	80	77	73	70	69	67	65	63	61	09	09	09	59	59	59	59	59	53
ain)	Amostras	_	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
T (min)	Amc																								